دانلود پروژه مقاله منظومه شمسی در word

دوشنبه 95/2/27 2:8 صبح| | نظر

 

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله منظومه شمسی در word دارای 22 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله منظومه شمسی در word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی دانلود پروژه مقاله منظومه شمسی در word ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن دانلود پروژه مقاله منظومه شمسی در word :

منظومه شمسی
منظومه شمسی سامانه‌ای متشکل از خورشید و آن دسته از اجرام آسمانی است که براثر جاذبه خورشید در مدارهایی پیرامون آن به دام افتاده‌ و می‌گردند.

این منظومه با فروپاشی یک ابر مولکولی غول‌پیکر در حدود 46 میلیارد سال پیش به وجود آمد. بیشتر جرم این سامانه در خورشید متمرکز شده‌است. 8 سیاره و 4 سیاره کوتوله دور خورشید می‌چرخند که همه آن‌ها روی یک دیسک تقریباً مسطح به نام دایرهالبروج قرار دارند. در میان این 8 سیاره، 4 سیاره زمین‌سان (درونی) وجود دارد که شامل عطارد، ناهید، زمین، و مریخ می‌شود که از سنگ و فلز ساخته شده‌اند و از سیارات گازی کوچکترند. چهار سیاره دیگر که به غول‌های گازی معروف اند شامل مشتری، زحل، اورانوس، و نپتون می‌شوند. مشتری و زحل به طور عمده از هیدروژن و هلیوم تشکیل شده‌اند در حالی که اورانوس و نپتون تا حد زیادی از یخ، آب، آمونیاک، و متان تشکیل شده‌اند و به “غول‌های یخی” معروف اند.

منظومه شمسی دارای اجرام بسیار کوچکتر از سیارات است. کمربند سیارکی که بین مریخ و مشتری نهفته‌است، به طور عمده از سنگ و فلز تشکیل شده‌است. فراتر از مدار نپتون، کمربند کویپر قرار داد که شامل اجسام فرا نپتونی است و عمدتاً از آب، آمونیاک و متان تشکیل شده‌است. در این میان، پنج سیاره کوتوله قرار دارد که به بزرگی سیارات نمی‌رسند اما بسیار بزرگ اند و شامل سرس، پلوتو، هائومیا، ماکی‌ماکی، و اریس می‌شوند. علاوه بر این، هزاران اجرام کوچک آسمانی در منظومه شمسی قرار دارند. در این میان می‌توان به دنباله‌دار، شهاب‌سنگ، و ماه اشاره کرد. هر یک از سیارات بیرونی توسط حلقه سیاره‌ای شامل گرد و غبار و ذرات دیگر محاصره شده‌اند.

باد خورشیدی، یک جریان پلاسما است که به ایجاد حباب باد ستاره‌ای میان ستارگان و کرات می‌پردازد. احتمال می‌رود که سرچشمه دنباله‌دارها ابر اورت باشد که هزاران بار از منظومه شمسی دور است. منظومه شمسی یکی از بازوهای کهکشانی به نام کهکشان راه شیری است که حدود 200 میلیارد ستاره دارد.

منظومه شمسی از فروپاشی گرانشی یک ابر مولکولی غول پیکر چرخان حدود 4568 میلیارد سال پیش تشکیل شد.[1] این ابر به احتمال زیاد چند سال نوری طول دارد و در مرکز آن ستاره‌ای به نام خورشید وجود دارد.[2] این ستاره شروع به داغ شدن کرد. با استفاده از تکانه زاویه‌ای سرعت چرخش آن بسیار افزایش یافت.[3] بسیاری از توده‌های این ابر در مرکز هسته جمع آوری شدند و هسته داغ و داغ تر شد. با انقباض چرخش ابری، یک دیسک گازی چرخان صاف[2] با 200 واحد نجومی به وجود آمد.[2] پیش‌ستاره در مرکز این دیسک قرار گرفت[4][5] و مواد سنگین تر، سیارات را تشکیل دادند و سرانجام منظومه شمسی تشکیل شد.[6]

طی 50 میلیون سال، بر اثر فشار و چگالی، هیدروژن در مرکز ستاره قرار گرفت و سبب همجوشی هسته‌ای گردید.[7] دما، سرعت واکنش، فشار و چگالی تا هیدرواستاتیک ادامه یافت و تعادل مناسبی بین فشار حرارتی و نیروی گرانش به وجود آمد. در این مرحله، خورشید به یک ستاره رشته اصلی تبدیل شد.[8]

یک مدل خوب نشان می‌دهند که تاریخ و ساختار منظومه شمسی ویژگی‌های گیج‌کننده‌ای دارد. در این مدل، سیارات غول پیکر گازی (مشتری، زحل، اورانوس، نپتون) بین 55 تا 17 واحد نجومی از خورشید فاصله دارند. یک دیسک این سیارات، حدود 35 برابر جرم زمین هستند. تعاملات گرانشی بین این سیارات ناشی از تغییرات مداری آن‌ها است. در طول یک دوره چند صد میلیون ساله، زحل، اورانوس، و نپتون فاصله زیادی از خورشید گرفتند در حالی که مشتری اندکی به خورشید نزدیک شد.

منظومه شمسی تا زمانی که هیدروژن هسته خورشید به طور کامل به هلیوم تبدیل شود، تا حدود 54 میلیارد سال آینده پابرجا خواهد ماند. پایان زندگی خورشید به نوعی پایان زندگی منظومه شمسی است. هنگامی که خورشید نابود شود، حدود 8 دقیقه بعد متوجه می‌شویم چون خورشید حدود 8 دقیقه نوری با زمین فاصله دارد و در آن زمان، نورش از زمین قطع خواهد شد. در آن هنگام، هسته خورشید سقوط خواهد کرد و خروجی انرژی بسیار بیشتر از حال حاضر خواهد بود. لایه‌های

بیرونی خورشید حدود 2600 برابر قطر فعلی خود گسرش خواهد یافت و سرانجام به یک غول سرخ تبدیل خواهد شد.[9] با افزایش یافتن سطح خورشید، سطح آن به صورت چشم‌گیری سرد خواهد شد. در نهایت، هسته برای همجوشی هسته‌ای هلیوم آماده خواهد شد و هیدروژن خواهد سوخت. این گسترش یافتن برای آغاز همجوشی عناصر سنگین تر و واکنش‌های هسته‌ای بسیار شدید تر کفایت خواهد کرد. لایه‌های بیرونی خورشید سقوط خواهد کرد و در فضا و حتی فراتر از سیارات کوتوله پراکنده خواهد شد و یک بخش بسیار بزرگ پراکنده شده آن، حدود نیمی از جرم اولیه خورشید به اندازه زمین خواهد شد.[10] لایه‌های بیرونی خورشید، سیارات ابری را تشکیل خواهند داد و عناصر سنگین فلزیگی آن کربن در فضای میان ستاره‌ای خواهند شد.

کشف
حدود هزاران سال پیش، انسان‌ها با چند مورد چشم‌گیر، منظومه شمسی را به رسمیت نشناختند. مردم معتقد بودند که زمین در مرکز گیتی ثابت مانده‌است و اجرام آسمانی در آسمان حرکت می‌کنند. اگر چه یک فیلسوف یونان باستان به نام آریستارخوس ساموسی بر این باور بود که خورشید در مرکز کیهان قرار دارد.[11] نیکلاس کوپرنیک برای نخستین بار به منظور توسعه یک سیستم ریاضی پیش بینی کرد که خورشید در مرکز کیهان قرار دارد.[12] جانشینان او در قرن هفدهم، از جمله گالیلئو گالیله، یوهان کپلر، و آیزاک نیوتن با درک فیزیک، پذیرفتند که زمین به دور خورشید می‌چرخد. علاوه بر این، اختراع تلسکوپ کمک بزرگی به کشف سیارات و ماه‌ها کرد. در زمان‌های اخیر، تلسکوپ با استفاده از فضاپیمای بدون سرنشین برای کشف پدیده‌های زمین‌شناسی مانند کوه، دهانه برخوردی، پدیده‌های هواشناسی از جمله ابر، طوفان شن و یخ در سیارات به فضا فرستاده می‌شد.

ساختار

طیف وسیعی از اجرام آسمانی که خورشید در وسط قرار دارد. گوشه‌های سمت چپ و راست با اوج و حضیض خورشید مطابقت دارند. میله‌های بلند، نشان‌دنده خروج از مرکز مداری است.

اصلی‌ترین جزء منظومه شمسی، خورشید است. 9986% جرم و غالب گرانشی خورشید، ستاره نوع جی است.[13] چهار غول گازی بسیار بزرگ به دور خورشید می‌چرخند که 99% اجرام گردش‌گر به دور خورشید هستند که 90% آن‌ها را مشتری و زحل تشکیل می‌دهند.

اجرام زیادی دور خورشید می‌چرخند که به عنوان دایرهالبروج شناخته می‌شوند. سیارات بسیاری در دایرهالبروج وجو دارند، در حالی که ستاره‌های دنباله‌دار و کمربند کویپر، میزان چشم‌گیری به دایرهالبروج تمایل دارند.[14][15] بسیاری از سیارات و دیگر اجرامی که به دور خورشید می‌چرخند، در جهت چرخش خورشید در حال چرخش‌اند. (بر خلاف جهت عقربه‌های ساعت.)[16] استثناهایی مانند حرکت بازگشتی ستاره دنباله‌دار هالی وجود دارد.

ساختار کلی مناطق ترسیم‌شده منظومه شمسی شامل خورشید، چهار سیاره محاصره‌شده توسط یک کمربند سیارکی سنگی، و چهار غول گازی محاصره‌شده توسط کمربند کویپر شامل اجرام یخی است. ستاره‌شناسان گاهی اوقات این مناطق را به شکل غیررسمی به مناطق مجزا تقسیم می‌کنند. بخش درونی منظومه شمسی شامل چهار سیاره زمین‌سان و کمربند سیارکی می‌شود.[17] بخش بیرونی منظومه شمسی نیز شامل چهار غول گازی فراتر از کمربند سیارکی است. کمربند کویپر خارجی‌ترین بخش منظومه شمسی است که یک منطقه متمایز و متشکل از اجرام فرانپتونی است.[18]

بسیاری از سیارات شامل کراتی به نام ماه هستند که به دور سیارات می‌چرخند. دو ماه بزرگ منظومه شمسی یعنی گانمید و تیتان، از عطارد بزرگ‌تر هستند. هر چهار غول گازی نیز دارای حلقه‌های سیاره‌ای هستند که حلقه‌های زحل از حلقه‌های دیگر غول‌های گازی بزرگ‌تر است. این حلقه‌ها از ذرات معلق فضا تشکیل می‌شوند. بسیاری از بزرگ‌ترین ماه‌ها در چرخش با سیاره خود هم‌گام هستند.

وانین حرکت سیاره‌ای کپلر، مدار اجرام پیرامون خورشید را توصیف می‌کند. طبق قوانین کپلر، هر جسم در امتداد یک مدار بیضی‌شکل به دور خورشید می‌چرخد. اجرام نزدیک به خورشید (با نیم‌قطر بزرگ) بیشتر تحت تاثیر گرانش خورشید قرار می‌گیرند و در نتیجه، با سرعت بیشتری دور خورشید می‌چرخند. فاصله یک سیاره از خورشید در یک مدار بیضی‌شکل تغییر می‌کند. نزدیک‌ترین فاصله یک سیاره در یک مدار بیضی‌شکل به خورشید را حضیض و دورترین فاصله در این مدار را اوج می‌نامند. مدار سیارات تقریباً دایره است، اما بسیاری از دنباله‌دارها، سیارک‌ها، و اجرام کمربند کویپر مدار بیضی‌شکل دارند. موقعیت اجرام در منظومه شمسی را می توان با استفاده از مدل عددی پیش‌بینی کرد.

با توجه به فاصله زیاد برخی از اجرام آسمانی از خورشید، دو یا چند جسم با برخورد به یک‌دیگر از خورشید دورتر می‌شوند. در واقع، در چند مورد استثنا، مدار فعلی سیاره یا سیارک‌های کمربند سیارکی، بزرگ‌تر از مدار پیشین آن است. برای مثال، ناهید حدود 033 واحد نجومی نسبت به عطارد از خورشید دورتر است؛ در حالی که زحل، 43 واحد نجومی از مشتری، و نپتون 105 واحد نجومی از اورانوس فاصله گرفته‌اند. تلاش‌های زیادی برای تعیین ارتباط بین این فاصله مداری (به عنوان مثال، قانون بده) انجام گرفته‌است[19] اما هیچ نظریه‌ای پذیرفته نشده‌است.
تعدادی از مدل‌های منظومه شمسی بر روی زمین تلاش کرده‌اند تا مقیاس‌های نسبی خوبی را ارائه دهند که در آن‌ها، منظومه شمسی تحت شرایط انسانی است. برخی از مدل‌های مکانیک – که اورریز نامیده می‌شوند – سراسر شهرها و مناطق را دربر گرفته‌است.[20] بزرگ‌ترین مدل، منظومه شمسی سوئد است که 110 متر است که در آن استکهلم جایگزین خورشید است و مشتری 40 کیلومتر از خورشید فاصله دارد و 75 متر است. در حالی که دورترین جسم آن یعنی سدنا، یک کره 10 سانتی‌متری است و 912 کیلومتر از خورشید فاصله دارد و در لولئا قرار دارد.[21][22]
ترکیب
خورشید که تقریباً تمام مواد منظومه شمسی را تشکیل می‌دهد، 98% از هیدروژن و هلیوم ساخته شده‌است.[23][24] مشتری که تقریباً تمام مواد باقی‌مانده را تشکیل می‌دهند، 99% از همان عناصر ساخته شده‌اند.[25][26] توسط فشار، گرما، و نور خورشید، ترکیب شیب‌داری در منظومه شمسی ایجاد شده‌است.[27] اجرام دورتر از خورشید، تا حد زیادی از مواد با نقطه ذوب پایین تشکیل شده‌اند. مرز سامانه خورشید فراتر از آن است که این اجرام پراکنده شوند.[28]

اجرام بخش درونی منظومه شمسی عمدتاً از سنگ ساخته شده‌اند.[29] برخی از ترکیبات با نقطه ذوب بالا از جمله سیلیکات، آهن و نیکل که جامد هستند، تحت شرایط خاصی به ابر گازی تبدیل شده‌اند.[30] مشتری و زحل عمدتاً از گاز تشکیل شده‌اند، نقطه ذوب پایین و فشار بخار بالایی مانند هیدروژن مولکولی، هلیوم و نئون دارند.[30] سیارات یخی، از یخ، آب، متان، آمونیاک، سولفید هیدروژن، و کربن دی‌اکسید تشکیل شده‌اند؛[29] دارای نقطه ذوب تا چند درجه کلوین هستند، در حالی که فشار و درجه حرارت آن‌ها به محیط‌شان بستگی دارد.[30] این‌گونه سیارات را می توان در مکان‌های مختلف منظومه شمسی یافت.[30] مواد یخی بیشتر ماه‌های سیاره‌های غول‌پیکر مانند اورانوس و نپتون (به اصطلاح “غول یخی”) و اجرام فراتر از نپتون را تشکیل می‌دهند.[29][31] با یک‌دیگر، گازها و یخ‌ها به عنوان مواد فرار نامیده می‌شوند.[32]

خورشید

گذر ناهید از کنار خورشید
خورشید، ستاره منظومه شمسی است که عناصر اصلی دور آن می‌چرخند. جرم این ستاره 332،900 برابر جرم زمین است.[33] دما و تراکم این ستاره برای همجوشی هسته‌ای کافی است.[34] همجوشی هسته‌ای زمانی شکل می‌گیرد که تمام هیدروژن این خورشید در واکنش‌های هسته‌ای به هلیوم تبدیل شود. این اتفاق حدود 5 میلیارد سال بعد رخ خواهد داد. با نابودی خورشید، منظومه شمسی نیز نابود می‌شود. هنگامی که همجوشی هسته‌ای این ستاره شکل گیرد، خورشید تا حدود 8 دقیقه در آسمان مانند همیشه می‌تابد چون حدود 8 دقیقه نوری تا زمین فاصله دارد. پس از 8 دقیقه، که نور خورشید از زمین قطع شود، متوجه پایان زندگی و نابودی این ستاره می‌شویم.[35]

خورشید در گروه کوتوله زرد از نوع جی2وی طبقه‌بندی شده‌است، یعنی این که در مقایسه با بیشتر ستاره‌ها در کهکشان راه شیری، بزرگ و درخشان نیست.[36] نمودار هرتسپرونگ-راسل یک نمودار روشنایی ستاره‌ها به همراه دمای سطحی آن‌ها است. به طور کلی، ستاره داغ‌تر، روشن‌تر است. خورشید از لحاظ روشنایی در جایگاه متوسط قرار دارد. با این حال، ستاره‌های روشن‌تر و داغ‌تر از خورشید به ندرت و بسیار کم پیدا می‌شوند؛ در حالی که، ستاره‌های کم‌نور با دمای پایین با عنوان کوتوله سرخ، تا 85% ستاره‌های کهکشان را تشکیل می‌دهند.[36][37]

شواهد نشان می‌دهد که خورشید در نیمه نخست زندگی خود به سر می‌برد و پس از همجوشی هسته‌ای، زندگی‌اش پایان خواهد یافت. خورشید از لحاظ روشنایی در حال رشد است؛ به طوری که در اوایل زندگی خود 70% از روشنایی حال حاضر خود را دارا بوده‌است.[38]

خورشید در جمعیت ستارگان نخستین قرار دارد و با توجه به تقویم مهبانگ، در مرحله پس از تکامل جهان متولد شد و در نتیجه دارای مواد سنگین‌تری از جمله هیدروژن و هلیوم است و بزرگ‌تر از ستارگان متولدشده در جمعیت دومین ستارگان است.[39] عناصر سنگین‌تر هیدروژن و هلیوم پس از انفجار ستارگان باستانی، هسته خورشیدی را تشکیل دادند و این مواد در جهان غنی هستند. قدیمی‌ترین ستارگان حاوی فلزات بوده‌اند؛ در حالی که، ستارگان متولدشده بعدی دارای فلزات بیشتری بوده‌اند. از آن جا که سیارات از یک صفحه یک‌پارچه فلزی تشکیل می‌شوند، خورشید به منظور دارابودن فلزات زیاد به گونه‌ای بسیار مهم و حیاتی است.[40]

 

محیط میان‌سیاره‌ای
خورشید علاوه بر نور سفید، جریان مداومی از ذرات باردار پلاسما که با عنوان باد خورشیدی شناخته می‌شوند را می‌تابد. سرعت حرکت این ذرات در فضا، 15 میلیون کیلومتر در ساعت است.[41] بادهای خورشیدی سبب می‌شوند که اجرام منظومه شمسی به سختی بتوانند 100 واحد نجومی از خورشید فاصله بگیرند.[42] این فضا را محیط میان‌سیاره‌ای می‌نامند. فعالیت‌های سطح خورشید مانند شراره خورشیدی، خروج جرم از تاج خورشیدی، مزاحم خورشیدی، و ایجاد آب‌وهوای فضایی سبب جاذبه و طوفان‌های زمین می‌شوند.[43] بزرگ‌ترین ساختار درونی کره، هلیو اسفریک است که به شکل مارپیچی است که توسط میدان مغناطیسی ایجاد شده‌است.[44][45]

 

میدان مغناطیسی زمین توسط جو زمین با دوری از بادهای خورشیدی متوقف می‌شود. ناهید و مریخ میدان مغناطیسی ندارند و در نتیجه، بادهای خورشیدی سبب می‌شوند که از منظومه شمسی دور شوند.[46] گدازه‌های تاج خورشیدی و حوادث مشابه آن، ضربه‌ای به یک میدان مغناطیسی و سطح خورشید است. تعامل میدان مغناطیسی و ذرات آن مشخص می‌کند که زمین دارای جو فوقانی است، که در آن تعاملاتی سبب ایجاد شفق قطبی می‌شود که در نزدیکی قطب مغناطیسی دیده می‌شوند.

 

پرتوهای کیهانی خارج از منظومه شمسی سرچشمه می‌گیرند. کرات تا حد زیادی سپرهای منظومه شمسی محسوب می‌شوند و میدان مغناطیسی سیاره (برای آن دسته سیارات که دارای میدان مغناطیسی می‌باشند) سپری برای محافظت از سیاره خود است. قدرت چگالی پرتوهای کیهانی در فضای میان‌ستاره‌ای و میدان مغناطیسی خورشید متفاوت است.[47]
سیارات حداقل دارای دو دیسک مناطق گرد و غبار کیهانی هستند. نخست، ابر گرد و غبار است که در بخش درونی منظومه شمسی قرار دارد و سبب نور منطقهالبروجی می‌شود. این رویداد احتمالاً با برخورد سیارات و کمربند سیارکی به وقوع پیوسته‌است.[48] دوم، فاصله گرفتن از خورشید تا 40-10 واحد نجومی است که احتمالاً توسط برخوردهای کمربند کویپر ایجاد گردیده‌است.[49][50]

 

درون منظومه شمسی
بخش درونی سامانه خورشیدی شامل سیارات و سیارک‌ها می‌باشد[51] که عمدتاً از سیلیکات و فلزات تشکیل شده‌اند و به خورشید نزدیک هستند. شعاع کل این منطقه کوتاه‌تر از فاصله بین مشتری و زحل است.
سیارات درونی

سیارات درونی منظومه شمسی. از راست به چپ:مریخ، زمین، ناهید، عطارد. (اندازه‌ها و مقیاس‌ها کاملاً دقیق و درست نیست)

 

در منظومه شمسی، چهار سیاره زمین‌سان (سیاره درونی) قرار دارد که عمدتاً از سنگ ساخته شده‌اند و دارای تعدادی ماه هستند و هیچ حلقه سیاره‌ای ندارند. این سیارات تا حد زیادی از مواد معدنی مقاوم مانند سیلیکات ساخته شده‌اند که در پوسته و گوشته آن‌ها قرار دارند و هسته آن‌ها را آهن و نیکل تشکیل داده‌اند. از این بین، سه سیاره (ناهید، زمین، مریخ) دارای اتمسفر کافی برای تولید آب‌وهوا، دهانه برخوردی، تکنوتیک، و ویژگی‌های سطح مانند از جمله شکاف دره‌ها، و آتشفشان‌ها هستند. عطارد و ناهید از زمین به خورشید نزدیک ترند.

عطارد
عطارد نزدیک ترین سیاره به خورشید و کوچک‌ترین سیاره در منظومه شمسی (0055 برابر جرم زمین) است و 04 واحد نجومی از خورشید فاصله دارد. این سیاره هیچ ماهی ندارد و سطح آن مانند سطح ماه است و پر از چاله است که احتمال می‌رود به دلیل انقباض هنگام به وجود آمدن خود باشد.[52] جو عطارد بسیار ناچیز است و توسط بادهای خورشیدی محاصره شده‌است.[53] هسته عطارد از آهن تشکیل شده و گوشته نازک آن هنوز رتبه‌دهی نشده‌است. فرضیه‌ای در این باره ادعا می‌کند که لایه‌های بیرونی این سیاره توسط یک ضربه شدید نابود شده‌اند و توسط انرژی مانع از تشکیل لایه‌های بیرونی می‌شود.[54][55]
[زمین بزرگ‌ترین و متراکم‌ترین سیاره درونی منظومه شمسی است که 1 واحد نجومی از خورشید فاصله دارد. زمین تنها سیاره‌ای است که فعالیت‌های زمین‌شناسی دارد و در آن زندگی وجود دارد.[58] آب‌کره مایع منحصر به فردی است که تنها در زمین دیده شده‌است و دارای ویژگی زمین‌ساخت بشقابی است. جو زمین با جو سیارات دیگر کاملاً متفاوت است به طوری که دارای 21% اکسیژن است.[59] ماه تنها ماه زمین است و از ماه‌های سیارات درونی دیگر بزرگ‌تر است.
مریخ
مریخ از زمین و زهره کوچک‌تر (0107 برابر جرم زمین) است و 15 واحد نجومی از خورشید فاصله دارد. جو این سیاره را دی‌اکسید کربن با فشار 06 درصد زمین پوشانده‌است.[60] مریخ دارای آتشفشان‌های گسترده‌ای از جمله آتشفشان کوه المپوس مونس (بلندترین کوه منظومه شمسی) و شکاف دره مارینر است. پژوهش‌ها نشان داده‌است که مریخ حدود 2 میلیون سال پیش فعالیت‌های زمین‌شناسی داشته‌است و ردهایی از آب در سطح آن دیده شده‌است.[61] رنگ قرمز این سیاره ناشی از اکسید آهن (زنگ‌زدن) در خاک خود است.[62] مریخ دارای دو ماه با نام‌های دیموس و فوبوس است که شکل عجیبی دارند و به نظر می‌رسد که اسیر مریخ شده باشند.[63]

کمربند سیارکی

 

سیارک‌ها، اجرام کوچک منظومه شمسی هستند که به طور عمده از مواد معدنی نسوز صخره‌ای، فلزی، کانیف و برخی از یخ تشکیل شده‌اند.[64] کمربند سیارکی مدار بین مریخ و مشتری را اشغال کرده‌است و 23 تا 33 واحد نجومی از خورشید فاصله دارد.[65] تصور می‌شود که این سیارک‌ها باقی مانده ذرات منظومه شمسی باشند که به دلیل گرانش مشتری نتوانستند به هم بپیوندند و سیاره تشکیل بدهند.[66]

 

سیارک‌ها صدها کیلومتر از زمین فاصله دارند.[67] سرس تنها سیارکی است که در گروه سیارات کوتوله طبقه بندی شده‌است؛ در حالی که، برخی از سیارک‌ها مانند وستا و سیارک 10 ممکن است به گروه سیارات کوتوله بپیوندند. کمربند سیارکی حاوی میلیون‌ها سیارک است که حدود ده هزار سیارک قطر بیش از یک کیلومتر دارند. با وجود این، بعید نیست که جرم کل کمربند سیارکی به جرم یک هزارم زمین برسد.[68] بیشتر کاوشگرهای فضایی که به سوی کمربند سیارکی فرستاده شده‌اند، حادثه‌ای ندیده‌اند. سیارکی که قطر آن بین 10-4 متر باشد را شهاب‌وار می‌نامند.[69]

سرس
سرس بزرگ‌ترین سیارک منظومه شمسی و یک سیاره کوتوله‌است که 277 واحد نجومی از خورشید فاصله دارد. قطر سرس اندکی کم‌تر از 1000 کیلومتر است و یک توده به اندازه کافی بزرگ برای گرانش و به شکل کروی است. سرس در قرن نوزدهم کشف شد و از ابتدا به عنوان سیاره انتخاب شد، اما طبق طبقه بندی‌ها در سال 1850، سرس به عنوان یک سیارک انتخاب شد.[70] در سال 2006، سرس در گروه سیارات کوتوله طبقه بندی شد.

 

گروه سیارکی
سیارک‌ها در کمربند سیارکی بر اساس ویژگی‌های مداری به گروه‌های سیارکی و خانواده‌ها تقسیم می‌شوند. سیارک‌هایی که در مدار یک سیارک بزرگ می‌چرخد را گاهی اوقات ماه می‌نامند. کمربند سیارکی شامل کمربند ستاره‌های دنباله‌دار نیز می‌شوند که ممکن است سرچشمه آب زمین بوده باشند.[71]
سیارک تروجان، نقاط لاگرانژی هستند که گرانش پایدار دارند. اصطلاح “تروجان” برای اجسام کوچک در هر زبان دیگری به کار می‌رود. گردش به دور خورشید سیارک هیلدا نسبت به مشتری 2:3 است.[72] بخش درونی منظومه شمسی نیز با سیارک‌های سرکش پوشانده شده‌اند.[73]
بیرون منظومه شمسی
منطقه بیرونی منظومه شمسی با غول‌های گازی و ماه‌های بزرگ آن‌ها پوشانده شده‌است. بسیاری از ستاره‌های دنباله‌دار از جمله سنتاور در این منطقه هستند. با توجه به فاصله از خورشید، اجسام جامد این منطقه که دارای آب، آمونیاک، و متان هستند، به دلیل درجه حرارت پایین جامد باقی می‌مانند و راحت تر می‌توانند از خورشید فاصله بگیرند.
سیارات بیرونی

از بالا به پایین: نپتون، اورانوس، زحل، مشتری. (اندازه‌ها و مقیاس‌ها کاملاً دقیق و درست نیست)
در منظومه شمسی چهار سیاره بیرونی یا غول گازی (گاهی اوقات سیارات مشتری‌سان) وجود دارند که 99% مجموع اجرامی هستند که به دور خورشید می‌چرخند. مشتری و زحل هر کدام جرمشان از جرم زمین بیش از 10 برابر بزرگ تر است و عمدتاً از هیدروژن و هلیوم ساخته شده‌اند. اورانوس و نپتون نیز به مراتب از زمین (کم‌تر از 20 برابر جرم زمین) بزرگ‌ترند و در سطح خود بیشتر دارای یخ‌اند. به همین دلیل، برخی از ستاره‌شناسان آن‌ها را در گروه “غول یخی” طبقه‌بندی کرده‌اند.[74] هر چهار سیاره بیرونی دارای حلقه سیاره‌ای هستند، هر چند که تنها حلقه زحل به راحتی از زمین دیده شده‌است.
[ویرایش] مشتری

نوشتار اصلی: مشتری (سیاره)
مشتری نخستین سیاره بیرونی و غول‌پیکرترین سیاره در منظومه شمسی است، به طوری که 318 برابر جرم زمین و 25 برابر جرم تمام سیارات منظومه شمسی جرم دارد. مشتری 52 واحد نجومی از خورشید فاصله دارد و بسیار داغ است. این سیاره عمدتاً از هیدروژن و هلیوم تشکیل شده‌است. حرارت شدید داخلی مشتری سبب ایجاد تعدادی از ویژگی‌های نیمه دائم در جو آن از جمله گروه‌های ابر و نقطه بزرگ قرمز در جو این سیاره می‌شود. تعداد ماه‌های مشتری 66 است و از بزگ‌ترین آن‌ها می‌توان به گانمید، کالیستو، آیو، و اروپا اشاره کرد که مانند سیارات دارای آتشفشان و حرارت داخلی هستند.[75] گانمید بزرگ‌ترین ماه در منظومه شمسی است و از عطارد بزرگ‌تر است.

زحل
زحل دومین سیاره غول‌پیکر منظومه شمسی است و شباهت‌ها زیادی به مشتری از جمله اتمسفر و مگنتوسفر دارد و 95 واحد نجومی از خورشید فاصله دارد. اگر چه زحل تنها دارای 60% از حجم مشتری است، اما بسیار غول پیکر است و حلقه‌هایش بسیار معروف‌اند. حلقه‌های زحل از یخ و ذرات کوچک سنگ ساخته شده‌اند. زحل دارای 62 ماه دارد که در آن بین، تیتان و انسلادوس بسیار بزرگ هستند و نشانه‌هایی از فعالیت‌های زمین شناسی در آن‌ها وجود دارد؛ اگر چه تا حد زیادی از یخ ساخته شده‌اند.[76] تیتان دومین ماه بزرگ منظومه شمسی پس از گانمید است و از عطارد بزرگ‌تر است و تنها ماه در منظومه شمسی است که فضای چشم‌گیری برای گردش به دور زحل دارد.

اورانوس
نوشتار اصلی: اورانوس
اورانوس 14 برابر زمین جرم دارد و سبک‌ترین سیاره بیرونی است و 196 واحد نجومی از خورشید فاصله دارد. اورانوس بسیار منحصر به فرد است و دارای یک انحراف محوری نود درجه نسبت به دایرهالبروج است که باعث شده‌است در این سیاره 41 سال، روز و 41 سال، شب باشد. این سیاره بسیار سرتر از غول‌های گازی دیگر است و گرمای بسیار کمی به او می‌تابد.[77] اورانوس دارای 27 ماه است که از بزرگ‌ترین آن می‌توان به تیتانیا، اوبرون، اومبریل، آریل، و میراندا اشاره کرد.

نپتون
نوشتار اصلی: نپتون
نپتون یا همان فرمانروای دریاها، هر چند از اورانوس کمی کوچک‌تر است؛ اما جرم آن معادل 17 تا کره زمین است و چگالی بیشتری دارد. نپتون گرمای زیادی دارد اما دمای آن به اندازه مشتری و زحل نیست.[78] نپتون دارای 13 ماه است که بزرگ‌ترین آن‌ها تریتون است. تریتون نشانه‌هایی از فعالیت‌های زمین‌شناسی از جمله آب‌فشان و نیتروژن مایع دارد.[79] تریتون تنها ماه بزرگ با حرکت بازگشتی است. نپتون در مدار خود دارای تعدادی ریزسیاره که تروجان نامیده می‌شوند است.
دنباله‌دارها

دنباله‌دارها، ستارگان کوچک منظومه شمسی هستند که تا چند کیلومتر کشیده می‌شوند و عمدتاً از غبار و یخ تشکیل شده‌اند و تا حد زیادی به گلوله‌های برف گل‌آلود شباهت دارند. مدار این ستارگان بسیار عجیب است و در مدار سیارات می‌چرخند و گاهی اوقات گامی فراتر از پلوتو می‌گذارند. هنگامی که دنباله‌دارها به درون منظومه شمسی وارد می‌شوند و به خورشید نزدیک می‌شوند، سطح یخی آن‌ها دچار تصعید می‌شود و به یون می‌شود و دم طولانی از گاز و گرد و غبار آن‌ها با چشم غیر مسلح دیده می‌شود.
دوره کوتاه مدت گردش دنباله‌دارها به دور یک مدار، کم‌تر از دویست سال است. آن‌ها در یک دوره طولانی گردش به دور مدار، هزار سال منتظر می‌مانند. ستاره‌های دنباله‌دار کوتاه از کمربند کویپر سرچشمه می‌گیرند؛ در حالی که، دنباله‌دارهای بلند مانند دنباله‌دار هیل-باپ از ابر اورت سرچشمه می‌گیرند. بعضی از دنباله‌دارها مانند کروز سونگرازرز با فروپاشی یک پدر و مادر به وجود می‌آیند.[80] برخی از دنباله‌دارها با مدار هایپربولیک ممکن است از خارج منظومه شمسی سرچشمه گرفته باشند، اما تعیین دقیق مدار آن‌ها دشوار است.[81] بسیاری از دنباله‌دارهای قدیمی که توسط گرمایش خورشیدی هدایت می‌شوند، اغلب به عنوان سیارک طبقه‌بندی شده‌اند.[82]
سنتاور
نوشتار اصلی: سیارک 10199
سنتاور یک ستاره دنباله‌دار است که مدار آن 15 برابر مدار مشتری است (55 واحد نجومی دورتر از مدار مشتری) و 30 واحد نجومی مانده به نپتون است. این سیارک 10،199مین سیارک کشف شده‌است و قطر آن حدود 250 کیلومتر است.[83][84]
منطقه فرا نپتونی
منطقه فرا نپتونی دورترین منطقه منظومه شمسی است که هنوز تا حد زیادی ناشناخته‌است. کوچک‌ترین اجرام منظومه شمسی در این منطقه قرار دارند و عمدتاً از سنگ و یخ تشکیل شده‌اند. این منطقه گاهی اوقات با نام “بیرون منظومه شمسی” شناخته می‌شود، هر چند این اصطلاح برای اجرام فراتر از سیارک‌ها به کار می‌رود.
کمربند کویپر

اجرام آسمانی کمربند کویپر، مجموعه‌ای در برابر چهار سیاره بیرونی
کمربند کویپر یک حلقه بسیار بزرگ مانند کمربند سیارکی است با این تفاوت که عمدتاً از یخ تشکیل شده‌است.[85] این کمربند 30 تا 50 واحد نجومی از خورشید فاصله دارد؛ هر چند شامل ده‌ها سیارات کوتوله‌است. بسیاری از بزرگ‌ترین اجرام کمربند کویپر مانند سیارک 50000، سیارک 20000، و سیارک 90482 ممکن است به عنوان سیاره کوتوله طبقه‌بندی شوند. تخمین زده می‌شود که در کویپر بیش از 100000 جسم با قطر بیش از 50 کیلومتر وجود دارد. اما تصور می‌شود که کل جرم کویپر یک‌دهم یا حتی یک‌صدم جرم زمین باشد.[86] بسیاری از اجرام کویپر، ماه‌های چندگانه هستند[87] و بسیاری از آن‌ها در خارج از دایرهالبروج قرار دارند.[88]
کمربند کویپر به دو بخش کلاسیک و مرتعش تقسیم شده‌است. مرتعش مربوط به مدار نپتون می‌شود که به دلیل انحراف مداری اش، گاهی اوقات از خورشید نسبت به پلوتو بیشتر فاصله می‌گیرد.[89] کمربندهای کلاسیک هیچ ارتعاشی ندارند و تا حدود 477-394 واحد نجومی گسترش می‌یابد.[90] اجرام بخش کلاسیک، مکعب وانوس نامیده می‌شوند و هنوز هم قصد خروج از مرکز مدار را دارند.[91]
پلوتو و چارون
نوشتارهای اصلی: پلوتو و چارون (ماه)

مقایسه هنری اریس، پلوتو،

 

برای دریافت پروژه اینجا کلیک کنید

دانلود پروژه مقاله کودکان عقب مانده ذهنی در word

دوشنبه 95/2/27 2:8 صبح| | نظر

 

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله کودکان عقب مانده ذهنی در word دارای 55 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله کودکان عقب مانده ذهنی در word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی دانلود پروژه مقاله کودکان عقب مانده ذهنی در word ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن دانلود پروژه مقاله کودکان عقب مانده ذهنی در word :

کودکان عقب مانده ذهنی

عقب ماندگی ذهنی اختلالی است که با عملکرد هوشی زیر حد طبیعی و اختلال در مهارتهای انطباقی مشخص می گردد. سن شروع عقب ماندگی ذهنی زیر 18 سال است و منظور از مهارتهای انطباقی انجام کارهای است که در هر سن خاص به طور معمول از فرد انتظار می رود .
انواع
عقب ماندگی ذهنی بر اساس میزان بهره هوشی ، از خفیف تا بسیار شدید ( عمیق ) وجود دارد . جدول زیر تقسیم بندی های مربوط به عقب ماندگی ذهنی را با توجه به نوع و مهارت مورد نظر نشان می دهد:
مهارت مورد انتظار نوع بهره هوش
آموزش پذیر خفیف 50- 70
ربیت پذیر بالا متوسط 35- 50
تربیت پذیر پایین شدید 25- 25
کمتر از 25 عمیق ایزوله ، نیازمند نگهداری در مؤسسه
در حالی که بهره هوش طبیعی در محدوده 90- 110 قرار می گیرد ، به فاصله بین 71- 84 هوش مرزی اطلاق می شود که این افراد عقب مانده ذهنی نیستند اما از نظر پیشرفت تحصیلی موفقیت چندانی ندارند . خوشبختانه کمترین تعداد این بیماران را عقب مانده ذهنی نوع شدید و بسیار شدید که عمدتاً نیازمند نگهداری و پرستاری دائم در مؤسسات مربوطه می باشند تشکیل می دهند.
شیوع این اختلال در حدود 1 درصد جمعیت می باشد که در جنس مذکر حدود 5/1 برابر جنس مؤنث است.
سبب شناسی عقب ماندگی ذهنی
1- عوامل قبل از تولد : بیشتر شامل تأثیرات ژنتیک و تغییرات کروموز می شود . ضمن این که عفونت های رحمی و ابتلای به بیماری سرخچه و توکسوپلاسموز ( بیماری خطرناکی که از طریق گربه منتقل می شود ) نیز در بروز عارضه نقش دارند . آنچه مسلم است بیشترین علل عقب ماندگی ذهنی همین عوامل قبل از تولد است که از نظر پیشگیری نیز اهمیت دارند ، به ویژه عوامل کروموزومی مانند سندرم داون و عوامل عفونی مثل سرخچه و توکسوپلاسموز مادرزادی . در این بین عوامل حین تولد مثل زایمان مشکل و خونریزی جمجمه و اشکالات تنفسی حین زایمان و ;.. نیز مؤثر می باشند .
2- عوامل پس از تولد : شامل ضربات شدید به جمجه کودک ( یرقان ) سیانوز ( سیاه شدن )، عفونتهای دوران نوزادی به همراه تب و تشنج ، کم کاری تیروئید و ;. است که با مواظبت از کودک بخصوص قبل از سن چهارسالگی می توان از بروز عقب ماندگی ذهنی تا حدی جلوگیری نمود.
3- عوامل محیطی اجتماعی : تأثیرات محدودتری در بروز عقب ماندگی ذهنی دارند و شامل فقر ، تغذیه ، ناپایداری خانواده ، وضعیت اقتصادی – اجتماعی بد و محرومیت های فرهنگی و استرسهای مکرر و فوق تحمل در محیط زندگی کودک است.
پیشگیری
پیشگیری اولیه : جلوگیری از ظهور عوامل ایجادکننده عقب ماندگی ذهنی بخصوص عوامل قبل از تولد ، اهمیت ویژه ای دارند. آموزش خانواده ، ممانعت از ازدواجهای فامیلی ، جلوگیری از حاملگی بعد از سنین 35 سالگی ، رعایت بهداشت حاملگی ( پرهیز از اشعه ، دارو ، ضربه به شکم ، تغذیه مناسب مادر ، جلوگیری و کنترل نمودن عفونت های مادرزادی و ;. ) در پیشگیری اولیه بسیار مؤثر هستند. محافظت کودک پس از تولد بخصوص در دوره نوزادی و مداخله ی درمانی به موقع در موارد بیماری ، مثل کم کاری تیروئیدی ( هیپوتیروئیدی ) نیز در جلوگیری از بروز عقب ماندگی ذهنی اهمیت دارد .
پیشگیری ثانویه :
عقب ماندگی ذهنی درمان ندارد و بهترین راه کنترل آن جلوگیری از بروز آن است . به نظر نمی رسد داروهای خاصی نیز در کنترل پیشرفت اختلال مؤثر باشد. مهمترین روش درمانی افراد عقب مانده ذهنی افزایش میزان سازگازی آنها ، محیط زندگی و تنظیم توقعات محیطی و سطح کارآیی این افراد در خانواده و جامعه است.
پیشگیری ثالث
انجام مشاوره خانواده و مشاوره فردی در جهت محدود کردن تأثیرات عقب ماندگی ذهنی ضرورت دارد . استفاده از روشهای توصیه شده توسط افراد متخصص در تقویت و حفظ کارآیی عملی این افراد می تواند باعث افزایش اعتماد به نفس و سازگاری مناسب تر با استرسهای معمول زندگی افراد عقب مانده ذهنی گردد. آموزش کودک و خانواده ، آموزش مهارت های کلامی ، محیطی ، ارتباطی ، اجتماعی ، همچنین آموزش های ویژه و فیزیوتراپی و آموزش های مهارت های جسمی همگی می توانند در سازگاری و رشد بهتر این افراد و توانبخشی آنان کمک مؤثری باشند.

کودک عقب مانده ذهنی در برابر ناکامیها و شکستها سخت کم طاقت است، وبرنامه آموزشی او می بایست به گونه ای تهیه و تنظیم گردد که با مختصر سعی و تلاشی که از خود نشان می دهد با موفقیت مواجه گردد و این بهترین کار مربی است و مربی واقعی کسی است که به تلاش شاگردش بها بدهد و نه به صرف محصول و نتیجه کار او. در ادامه مقاله بهشتیان روی زمین سعی داریم شما را هر چه بهتر با دنیای این کودکان دوست داشتنی آشنا کنیم تا بیشتر ، از نیازهای نهفته آنها به عنوان یک انسان مطلع شوید. کودک عقب مانده ی ذهنی، اندوخته ی فراوانی از تجارب ناکام دارد، کمتر تشویق و ترغیب شده است و نیازمند تشویق و ترغیب و کوششهای موفقیت آمیز است. او تنبیه فراوان شده است (اعم از تنبیه بدنی و یا تنبیه عاطفی و روانی) و تنبیه آفت رشد و شکننده ی اعتماد به نفس و خودپنداری اوست.
پس بر ماست که از تنبیه او بپرهیزیم و او را مقصر در کم توانی هایش ندانیم. کودک عقب مانده ی ذهنی،
کارها را کم کم و جزیی تر می آموزد و انجام می دهد، نباید از او انتظار توفیق سریع و ناگهانی داشته باشیم. او همیشه نیازمند تمرین و تکرار در زمینه های مختلف یادگیری و انجام کارهاست. به نقاط ضعف او بیشتر توجه شده
است تا به ابعاد قوی تر وجودش، چه بهتر که ما ارتباط آموزشی مان را با او از نقاط مثبت و یا با توانمندی هایش برقرار نماییم. کودک عقب مانده ذهنی، بازخورد یا نگرش مثبتی به خود، اطرافیان و جهان هستی ندارد و بالطبع
بسیاری از رفتارهای او ناشی از همین نگرش است. لذا ایجاد نگرش مثبت و مفید در وی نسبت به خود و کارهایش امری است بسیار مهم وضروری.
کودک عقب مانده ی ذهنی، اندوخته ی فراوانی از تجارب ناکام دارد، کمتر تشویق و ترغیب شده است و نیازمند تشویق و ترغیب و کوششهای موفقیت آمیز است.
کودک عقب مانده ی ذهنی از نظر اجتماعی ناسازگاری بیشتری دارد، زیرا اجتماع او را خوب نمی شناسد و از او در حد توانش انتظار ندارد. کودک عقب مانده در برقراری ارتباط با دیگران مشکل دارد و در پذیرش مسؤولیتها سخت درمانده است. کودکان عقب مانده ی ذهنی از نظر انگیزش بسیار ضعیف است، عمدتاً فقر انگیزش بر وجود وی غالب است و در نتیجه همیشه فاصله ی نسبتاً زیادی بین توان بالفعل و توان بالقوه ی او جود دارد. لذا ایجاد نگرش مثبت و انگیزه ی قوی و غنی (خواستنها) در کودکان عقب مانده ی ذهنی زمینه ی رشد، پیشرفت و
شکوفایی توانمندیهایشان را هموار می نماید. کودکان عقب مانده ی ذهنی در رفتار سازشی بسیار ضعیف هستند، رفتاری که زمینه پذیرش مسؤولیتها را به تناسب سن و رشد آنها فراهم می سازد. بنابراین، توجه به رفتارهای نامطلوب آنان و اصلاح رفتارها از اهم برنامه های تربیتی این کودکان محسوب می شود.
ویژگی دگر پیروی در کودکان عقب مانده ی ذهنی فوق العاده زیاد است، لذا می بایست ضمن دقت در ارائه الگوهای رفتاری، برای تقویت و تعمیم رفتارهای مطلوب در آنها و قوی کردن اعتماد به نفس ایشان از راه تشویق و ترغیب و مواجه نمودن آنان با تجارب موفق و خوشایند، تلاش کرد؛ و از آنجا که افراد عقب مانده ی ذهنی چشم دارد اما تیزبینی ندارد و نیازمند نگاه های محبت آمیز است.
گوش دارد، اما قدرت و قوت لازم را برای تشخیص شنوایی ندارد و نیازمند شنیدن کلام آرام، صدای هدایتگر و مهربان است. حس چشایی اش ضعیف است و در تشخیص شیرینیها و تلخیهای خوراکیها کمی کند است، اما نیازمند چشیدن تلخیها و شیرینیهای زندگی است، حس بویایی اش نیز ضعیف است اما بوی عطر محبت را بیش از هر بوی دیگری می یابد. حس لامسه اش ضعیف است، اما نیاز بیشتری به لمس کردن و گرمی و تماس و فشردن دستهای دوستی دارد. دست دارد، اما نیاز بیشتری به دستگیری دارد. پا دارد، اما نیازمند حرکت و تحرک و
راهبردی است. و سرانجام چهره ی معصوم و گویایش نیازمند شکفتن است و قلب مهربانش آکنده از عطوفت و مهرپذیری. کودکان عقب مانده ی ذهنی در برابر بیماریها آسیب پذیرند، لذا بیشتر نیازمند مراقبت و هدایت می باشند.
خانواده ای دارد که در غالب موارد هاله ای از احساسات مختلف و بعضاً متضاد مثل احساس حمایت شدید، احساس طرد، احساس غم و اندوه، احساس گناه، احساس درماندگی، احساس رضایت و تسلیم و; وجود آنان را در بر می گیرد، و این احساس بتدریج تبدیل به رفتار می گردد سرانجام کودک عقب مانده ی ذهنی با هر
میزان هوشی که دارد می تواند آموزش پذیر، تربیت پذیر، یا اینکه حمایت پذیر باشد. در هر حال نیاز مبرم به حمایت و هدایت مستمر دارد و توان بالقوه اش بیشتر از توان بالفعل اوست.
او زبان دارد، اما در اظهار و بیان خواستها و مکنونات قلبی اش با مشکل مواجه است و نیازمند صبر و حوصله و بردباری و گوش شنوای مربی است.

تاریخچه عقب مانده ذهنی

از نظر تاریخی عقب مانده ذهنی در هر جامعه ای وجود داشته و می توان گفت از زمانیکه انسان خود را شناخته عقب ماندگی ذهنی وجود داشته ولی انسان نسبت به آن واقف نبوده و هر جامعه ای متناسب با رشد فکری و فرهنگی خود برخورداریهای متفاوت با این افراد داشته اند مثلاً در قرون وسطی در اروپا علت عقب ماندگی ذهنی را روسوخ ارواح شیطانی و خشم خدایان نسبت به این افراد می دانستند و متناسب با آن درمانهایی بسیار سخت و آزار دهنده ای به آنها می دادنند . مثلاً سوراخ کردن سر در آسیا مسئله به طور دیگری بود در آیئن کنفوسیوس چین با عقب ماندگان ذهنی با ملایمت و مهربانی رفتار می شود . در آیئن یهود آمده است که اگر فرد عقب مانده ای جرمی را مرتکب شد نباید او را مجازات کرد . در حالی که در اروپا عقب مانده ها را مانند افراد سالم مجازات می کردنند در دین اسلام با عقب مانده های ذهنی با دید بازتری برخورد شده البته در اسلام روی عقب مانده های ذهنی تنها بحث نشده بلکه در اسلام کلمه مسکین به معنی تهی دست و فقیر بارها مورد تاکید قرار گرفته و همچنین رفتار با ملایمت با این افراد توصیه شده است
کلمه مسکین تنها به معنی تهیدست و فقیر اقتصادی نیست . بلکه کسانی که نیاز به آموزش و تربیت و سایر نیازها را نیز شامل می شود و به عبارتی فرد معلول ذهنی و غیره به نوعی نیازمند می باشند .

رویدادهای مهم در رابطه توجه به عقب مانده های ذهنی

1 انقلاب کبیر فرانسه
شعار انقلاب کبیر فرانسه آزادی و رعایت حقوق بشر یعنی از بین رفتن فقر و برده داری به دنبال این انقلاب افراد دانشمند و متخصص در رشته های مختلفی پیدا شدند که جرعت اظهار عقیده داشتند . مثلا ایتارد و پینل بیان کرد .
پینل عقیده داشت :
که عقب مانده ذهنی با بیماران روانی متفاوت هستند و قبل از اینکه اینها بیمار باشند انسان هستند و باید مانند انسانها با او رفتار شود
ایتارد هم اعتقاد داشت :
که فرد عقب مانده ذهنی با این که مشکل ذهنی داشته ولی به وسیله آموزش از طریق حواسهای مختلف می توانند آنها را تا حدودی بهبود بخشید ایتارد به عنوان اولین معلم کودکان عقب مانده ذهنی مطرح است .

2 رونسانس انقلاب اروپا (قرن 18 )

در انقلاب اروپا مسئله حقوق بشر به صورت یک قانون مدون شد و همین مسئه باعث تحولاتی در طرز برخورد با افرا عقب مانده ذهنی شد همچنین پیشرفت های پزشکی در این دوره و شناخت علت های مختلف عقب مانده ذهنی در ترویج برنامه های آموزشی در این دوره تحولی در زمینه عقب ماندگی ایجاد کرد
3 جنگ جهانی اول و دوم

به دنبال جنگ جهانی اول و دوم به علت باسازی بعد از جنگ نیاز به نیروی انسانی افزایش یافت و افراد عقب مانده ذهنی و بیماران روانی در کارخانه ها و دیگر مراکز بکار گرفته می شدند و همچنین بعد از جنگ توجه به معلولین ناشی از جنگ باعث شد که روشهای خاص توانبخشی و آموزشی برای معلول عقب مانده ذهنی بکار گرفته است .این توجهات باعث شد که روشهای توانبخشی اجتماعی حرکتی حرفه ای آموزشی و کارگاهای حمایتی ومدارس تاسئس شد . و هر کدام تاثیر بی شماری روی عقب مانده ذهنی گذاشت .

عقب ماندگی ذهنی و انواع آن
تعریف:
به معنای نقص هوشی در اوئل زندگی- در مقابل دمانس می باشد که با محدود شدن عملکرد اجتمائی همراه است. با اقدامات آموزشی و اجتمائی می توان یک زندگی طبیعی در خارج از بیمارستان را برای این افراد فراهم کرد که شامل مدارس ویژه, انجام کار های خانه داری و صنایع دستی و حمایت از این افراد و خانواده آنان می باشد.
آمار
در جمعیت 15-19 سال شیوع موارد متوسط و شدید حدود 3-4 مورد در 1000 است. معادل 6-8 مورد در 2000بیمار یک پزشک عمومی. این شیوع از سال 1930 اندکی تغییر کرده اما بروز موارد شدید به علت مراقبت های خوب نوزادی و جنینی تا حد یک سوم تا یک دوم کاهش یافته است. علت ثابت ماندن شیوع, زندگی طولانی تر افراد عقب مانده ذهنی است.
مشکلات جنسی
شایعترین آن استمناء در معرض عموم است. برخی مثل بچه ها در مورد بدن سایرین کنجکاو هستند که ممکن است از آن تعبیر جنسی شود. بسیاری از عوامل عقب ماندگی ذهنی ارثی نیست و آن دسته که ارثی است باعث ناباروری نیز می شود.
بنا بر این نگرانی اصلی از مقاربت این افراد تولد کودکان عقب مانده نیست بلکه توانائی آنان به عنوان یک پدر یا مادر برای نگهداری یک کودک طبیعی است. استفاده از روش های جلوگیری مفید است.
بیماریهای جسمی:
شایعترین حالت در موارد شدید و بسیار شدید عقب ماندگی ذهنی دیده میشود که اکثرا ناتوانائی های حسی یا حرکتی و یا صرع دارند. فقط یک سوم این افراد تحرک دارند و یک چهارم به دیگران وابسته هستند. مشکلات شنوائی و بینائی مانع دیگری برای توانائی شناختی است. ناتوانی های حرکتی که شایع نیز می باشد عبارتند از: اسپاستیسیتی-اتاکسی-آتتوز
اثر عقب ماندگی ذهنی بر خانواده
به محض تشخیص عقب ماندگی ذهنی در نوزاد والدین دچار دیسترس می شوند. برخی کودک را نمیپذیرند. گرچه این طرد کردن مدت طولانی دوام ندارد معمولا تشخیص پس از سال اول گذاشته می شود. والدین مجبورند امید ها و انتظارات خود را تغییر دهند که گاهی باعث افسردگی طولانی والدین همراه با احساس گناه و شرم و خشم می شود. تعداد کمی کودک را نمیپذیرند. در حالی که بقیه در مورد مشخصات سایر فرزندان شدیدا احساس می شوند.
سرانجام اکثر والدین تطابق پیدا میکنند. این والدین نیازمند حمایت طولانی مدت هستند.
مشکلات هیجانی و رفتاری
واکنش ها به وقایع استرس زا
واکنش آنان مشابه افراد عادی است. با این حال آنان دیسترس را بیشتر در رفتار خود نشان می دهند تا در کلمات. تحریک پذیری , آژیتاسیون ترس یا رفتار های دراماتیک ممکن است نشانه یک اختلال حاد استرس باشد. همیشه باید این نکته را در نظر داشت که گاهی این واکنش به یک بیماری جسمی تشخیص داده نشده است.
مشکلات رفتار
این مشکلات , نسبت به کودکان عادی در سنین بالاتری رخ داده و بیشتر طول میکشند گرچه طی زمان بهبود می یابند.بسیاری از عقب ماندگان ذهنی, پرفعالیت و حواس پرت تکانشی (impulsive) هستند. مشکلات جدی تر عبارتند از خود آزاری و رفتار های اوتیسمی( مثل فعایتهای تکراری بی هدف و استرئو تایپی خم شدن به عقب جلو کوبیدن سر به دیوار). این مشکلات جدی در عقب ماندگان ذهنی شدید شایعتر است( 40% کودکان و 20% بزرگسالان). در تعداد کمی از بیماران رفتار های تهاجمی به حدی شدید است که احتمال آسیب به خود بیمار و مراقبت وی وجود دارد که به آن رفتار های چالشی برانگیز (challenging) میگویند.
تظاهرات بالینی:
نمای کلی عبارت است از کاهش کارائی در همه انواع کار های هوشمندانه مثل یادگیری, حافظه کوتاه مدت, استفاده از مفاهیم و حل مشکل. گاهی یک عملکرد بیشتر از بقیه مختل میشود مثل زبان
عقب ماندگی ذهنی خفیف: 70-50
80 درصد افراد عقب ماندگی دهنی در این گروه هستند. از نظر ظاهری طبیعی هستند و نقایص حسی و حرکتی آنان خفیف است. بنابراین عقب ماندگی ذهنی آنان تا شروع مدرسه تشخیص داده نمیشود. در سنین بزرگسالی می توانند زندگی مستقلی داشته باشند. گرچه در مواردی مثل خانه داری, اشتغال و مواجه با موقعیت های استرس زا نیازمند کمک
هستند.
عقب ماندگی ذهنی متوسط: 49-35
12 درصد کل بیماران را تشکیل می دهند , یادگیری زبانی در حد برقراری ارتباط کافی است و اکثرا می توانند نحوه مراقبت از خود را یاد بگیرند. در دوران بزرگسالی اکثرا قادرند کارهای روزمره را انجام بدهند.
عقب ماندگی ذهنی شدید: 34-20
حدود 7% کل بیماران هستند. رشد آنان در دوران پیش دبستانی شدید کاهش یافته است و بنابراین یادگیری آنان در مدرسه نیز همینطور است. البته بسیاری از آنان میتوانند نحوه مراقبت از خود را بیاموزند و با جملات ساده ارتباط برقرار کنند. در بزرگسالی می توانند وظایف ساده ای را انجام دهند و فعالیتهای اجتمائی محدودی دارند. بسیاری مشکلات جسمانی همراه دارند. تعداد اندکی از آنان توانائی شناختی ویژهای دارتد که در حالت طبیعی نیازمند هوش بالاست مثل محاسبات ریاضی ذهنی یا حافظه قوی . این افراد احمق دانشمند نامیده میشوند.
عقب ماندگی ذهنی بسیار شدید : کمتر از 20
یک در صد عقب ماندگان ذهنی در این گروهند. تعداد اندکی از آنان می توانند کاملا از خود مراقبت کنند و نیز تعداد کمی می توانند رفتار های اجتمائی یا توانائی سخن گفتن داشته باشند
کودکان استثنایی
همواره یکی از دلایلی که ما نمی توانیم اطلاعات کاملاً‌ مربوط و جامعی در مورد کودکان و دانش آموزان استثنایی بدست بیاوریم اینست که معمولاً وقتی با کودک استثنایی مواجه می شویم ذهن ما بخاطر انباشته شدن ، از غیر عادی بودن ذهنی یا جسمی کودک پیشداوری می کند و غالباً ویژگیهای خاصی که کودکان استثنایی دارند ( نابینایی – ناشنوایی – عقب ماندگی و ) مشخصه اصلی آنها می شود .
متاسفانه اکثر والدین از داشتن چنین فرزندانی احساس شرمندگی می کنند ودر قالب موارد سعی در مخفی کردن کودکشان در انظار عمومی دارند .
تعریف کودک استثنایی :
کودک استثنایی اول یک کودک است ( انسان است با همه خصوصیات و صفات یک انسان و بعد کودکی است با خصوصیات و تفاوتهای استثنایی نسبت به سایر کودکان . و همین ویژگیها و خصوصیات است که معلمان و اولیا باید خودشان را با آن سازگار کنند .
در واقع بین تمام خصوصیات روانی و جسمانی و تمام استعدادهای مختلف هر فرد تفاوتهای مشهودی موجود است پس می توان گفت که هر فرد نسبت به افراد دیگر استثنایی است و کلمه استثنایی بطور اعم و به معنای دقیق علمی خود نمی تواند فقط به گروههای خاصی از افراد جامعه اطلاق شود .
بنابراین آنچه که ما اصطلاحاً « کودک استثنایی » می گوئیم بدین معناست که کودک از نظر هوشی و جسمی و روانی و اجتماعی بمیزان قابل توجهی نسبت به دیگر همسالان خود متفاوت می باشد و نمی تواند بنحو مطلوب حداکثر استفاده از برنامه های آموزش و پرورش عادی ببرد .
در اینگونه کودکان واکنشها ، ویژگیهای خاص دارد بدلیل اینکه کودک رشد فکری کامل ندارد و بدلیل اینکه نمی تواند بر رفتارهای خود کنترل داشته باشد و یا اگر عمل خلافی از او سر زد احساس گناه و تقصیر کند ، چون از نظر شخصیتی نارس و نابالغ است ، ناگزیر نیازمند به توجه خاص و آموزش و خدمات فوق العاده ای است .
عنوان کودکان استثنایی در مکاتب امریکا و انگلستان فرق می کند . در امریکا به تمام کودکانی که بنحوی با کودکان طبیعی و همسن خود از نظر فکری ، جسمی ، عاطفی . عقلانی ، رفتاری و … فرق داشته باشد استثنایی گفته می شود و مسلماً با قبول این تعریف یک کودک نابغه ، نابینا ، ناشنوا و عقب مانده ذهنی همه استثنایی هستند .
کودکان استثنایی
مقدمه :
لغت استثنایی اصولاً یک اصطلاح آموزشی است . مربیان آموزش و پرورش و مشاوران راهنمایی در زمره ی اولین کسانی هستند که به محدودیتهای یادگیری ، عاطفی شخصیتی ، اجتمایی، و مشکلات این افراد پی می برند و باید نسبت به رفع آنها با روشهای موجود و همچنین پیشگیری از مشکلات آنی اقدام نمایند .

)) جایگاه آموزش وپرورش استثنایی))

درسال 1369 قانون تشکیل سازمان آموزش وپرورش استثنایی کشور به تصویب مجلس شورای اسلامی رسید.نظر به اینکه مبارزه با مستکبرین وحمایت از مستضعفین از شعارهای اصلی انقلاب اسلامی بوده و حکومت اسلامی نیز درجهت رفع استضعاف پایه گذاری شده است کودکان استثنایی که از مصادیق بارز مستعضفین وبه تعبیری از گروه محرومان مضاعف جامعه بودند؛ موردتوجه وعنایت مسئولان وبرنامه ریزان قرار گرفتند وازهمان اوان انقلاب دراولویت نظام اسلامی قرار داده شدند. درمنشورجهانی حقوق کودک هم آمده است همه بدون تبعیض دررنگ ؛نژاد؛ زبان؛ تبار اقتصادی؛ طبقه اجتماعی ؛ علی رغم آن که از هوش سرشاری برخوردار باشند ویا عادی ؛ عقب مانده ذهنی ؛ نابینا ؛ ناشنوا یا دارای هرگونه نقص ویا ضعف جسمی واجتماعی باشند؛ حق دارند به طور یکسان ازامکانات یادگیری ؛ آموزشی ؛ پرورشی با حداکثر توانایی و استعدادهای خودبهره مند شوند. ایجاد زمینه و فراهم آوردن امکانات وتسهیلات درجهت آموزش ؛ رفاه وتوانبخشی آنان نه به عنوان ترحم ودلسوزی بلکه به عنوان یک وظیفه برای دولت های عضو از حقوق مسلم اینگونه کودکان تلقی می شود.
اهداف آموزش وپرورش استثنایی کشور نیز براین اصل استوار است که هرکودک استثنایی با توجه به تفاوتهای فردی حق دارد از آموزش متناسب با استعدادهای خویش برخوردار گردد.

)) تعریف آموزشگاه استثنایی ))
دراین آموزشگاه دانش آموزان یک یا چند گروه استثنایی دریک دوره تحصیلی ، آموزش می بینند.
((کودکان استثنایی))
عنوان کودکان استثنایی در مکاتب امریکا و انگلیس فرق می کند در امریکا به تمام کودکانی که به نحوی با کودکان طبیعی و همسن خود از نظر فکری ، جسمی ، عاطفی ، عقلانی ، رفتاری ، ;. فرق داشته باشند استثنایی گفته می شود مسلماً با قبول این تعریف یک کودک نابغه ، نابینا ناشنوا عقب مانده ذهنی و نظایر آن همه استثنایی هستند .
درانگلستان لغت استثنایی را محدود به تیز هوشی می کنند و سایر کودکان را که به عللی تحت حمایت و آموزش خاص هستند کودکان ویژه میگویند .

(( دانش آموز استثنایی ))
مطابق بند1 فصل اول آیین نامه اجرایی آموزش وپرورش استثنایی ؛ دانش آموز استثنایی به فردی اطلاق می شود که از نظر ذهنی (هوشی) ؛ جسمی(جسمی وحرکتی) ؛ عاطفی ویا اجتماعی تفاوت قابل ملاحظه ای با افراد همسن خود داشته باشند واین تفاوت به حدی باشد که برخورداری آنان از آموزش وپرورش مستلزم تغییرات دربرنامه ها ؛ روش ها؛ مواد آموزشی ؛ فضای آموزشی عادی و ارائه خدمت آموزشی وتوانبخشی ویژه آنان باشد.

(( طبقه بندی کودکان و نوجوانان استثنایی ))
کلی ترین طبقه بندی ، که مورد قبول اکثریت متخصصان می باشد عبارت است از تقسیم این افراد به سه دسته بزرگ :
الف: کودکان و نوجوانان که به علت اختلافات هوشی و فعالیتهای ذهنی از کودکان عادی متمایزند . در این دسته کودکان و نوجوانان عقب مانده ذهنی و افراد تیز هوش قرار دارند .

ب : کودکان و نوجوانانی که به علت اختلالات و ضایعات مغزی یا اختلالات عملی مبتلا به اختلالات رفتاری هستند . در این دسته کودکان و نوجوانان ناسازگار یا دشوار قرار دارند.
ج: کودکان و نوجوانان مبتلا به اختلالات و نقایص حسی و حرکتی و اختلالات عملی رشد ، در این دسته نابینایان و همچنین مبتلایان به اختلالات تکلمی ، اختلالات کنترل استنکترها و ناتوانیهای حرکتی قرار دارند .
(( عقب ماندگی ذهنی))
عقب ماندگی ذهنی یا به اصطلاح دیگر نارسایی رشد قوای ذهنی موضوع تازه و جدیدی نیست بلکه در هر دوره و زمان افرادی در اجتماع وجود داشته اند که از نظر فعالیتهای ذهنی در حد طبیعی نبوده اند .
گروهی از مردم استنباط نادرستی از عقب ماندگی ذهنی داشته و تصور مینمایند که عقب ماندگی ذهنی همانند یک مرض بوده و میتوان از شخصی به شخص دیگر سرایت نموده ویا مانند سل و آبله و سرخجه قابل انتقال در میان کودکان می باشد .

اجتماع برای مصلحت ، یا سالم سازی ، بعضی از این افراد را تحمل می کرد عده ای را محبوس می ساخت و دسته ای را به مرگ محکوم می نمود. پنیل که به حق باید او را بنیانگذار روانپزشکی جدید نامید اولین کسی بود که به دلجویی بیماران پرداخت و برای آنان برنامه های تفریح و گردش در نظر گرفت . او بیماران روانی را به 4 دسته تقسیم کرد .

1- ملانکولی یا مالیخولیا .
2- مانی یا جنون شور و شوق .
3- جنون .
4- عقب ماندگی ذهنی .
بعد از پنیل ، یک پزشک فرانسوی بنام ایتارد به تربیت کودکی وحشی پرداخت که در جنگلهای«‌ آویرون » فرانسه پیدا شد .کودک عقب ماندگی بسیار عمیقی داشت.. ایتارد تربیت کودک را بعهده گرفت و کوششهای بسیطی در این زمینه مبذول داشت تا موفق به پیدایش راه جدیدی در نحوه آموزش و پرورش افراد عادی عقب مانده و حتی معلولین گردید .

همکار ایتارد بنام سگن بدنیال زحمات وی و به منظور شکوفا کردن این کودکان مؤسسه ای برای عقب ماندگان ذهنی ایجاد کرد و روش حواس حرکتی را در آموزش کر و لالها به کار برد.
این پیشرفتها همچنان ادامه یافت تا اوائل قرن بیستم که توجه به اصلاح نژاد بشر در دستور کار قرار گرفت و در امریکا به توصیه بخش اصلاح نژاد کمیته پژوهشی انجمن زاد و ولد امریکا ، نازا کردن عقب مانده ها به صورت قانون در آمد و بالاخره در قرن بیستم بود که دانشمندان و پژوهشگران عقب ماندگیهایی که به دلیل اختلالات متابولیکی ، نقصهای کروموزومی ، بیماریهای مادر در دوران بارداری و … ایجاد می شد را کشف کردند و راه را برای پژوهش و درمان این افراد هموار ساختند .

پیشرفت روز افزون علوم پزشکی ، جراحی اعصاب و مغز و علوم ژنتیک علاوه بر کشف تدریجی علل عقب ماندگیها تا اندازه ای باعث تخفیف و گاهی بهبودی نسبی و حتی پیشگیری از ابتلا به این ناراحتیهای وخیم شده است .

شرایط بهداشتی ، تغذیه کودکان ، پیدایش آنتی بیوتیکها و سایر داروها در درمان بیماریهای خاص که شایعترین علل عقب ماندگیهاست از مرگ و میر این افراد به میزان قابل توجهی کاسته است .
(عقب ماندگی ذهنی یک وضعیت و حالت خاص ذهنی است که در اثرایجاد مشکل در شرایت مختلف قبل از تولد و هنگام تولد ویا پس از تولد کودک پدید میآید .)

((علل عقب ماندگی ذهنی : ))
عوامل متعددی وجود دارد که باعث بروز عقب ماندگی می شود .برای سهولت بیشتر ،علل عقب ماندگی ذهنی را می توان به سه مرحله در رابطه با تولد کودک تقسیم نمود .
الف :علل قبل از تولد :که شامل عوامل ژنتیکی و مادر زادی میباشد .
ب : عوارض هنگام تولد : که شامل عارضه های زمان تولد می باشد .

 

برای دریافت پروژه اینجا کلیک کنید

دانلود پروژه مقاله کهکشان در word

دوشنبه 95/2/27 2:8 صبح| | نظر

 

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله کهکشان در word دارای 17 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله کهکشان در word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی دانلود پروژه مقاله کهکشان در word ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن دانلود پروژه مقاله کهکشان در word :

مقدمه
همه چیز در حال گردش است. زمین به دور خورشید مى چرخد و ماه تنها قمر زمین به دور زمین. زمین و تمامى سیارات منظومه خورشیدى نیز به دور ستاره بزرگ خورشید مى چرخند. منظومه خورشیدى ما که در یکى از بازوهاى کهکشان راه شیرى قرار دارد به دور هسته مرکزى راه شیرى مى چرخد. کهکشان راه شیرى در خوشه اى به نام گروه محلى قرار دارد. تمامى کهکشان هاى گروه محلى نیز به دور مرکز گروه محلى در حال چرخش هستند. از گردهم آمدن گروه ها و خوشه هاى بسیارى همچون گروه محلى، مجموعه بسیار بزرگ ترى به نام «ابر خوشه » تشکیل مى شود. دنیایى که ما در آن زندگى

مى کنیم از میلیون ها ابر خوشه تشکیل شده است. حالا مى خواهیم از زمین کوچکمان که در این دنیاى بزرگ، حتى به اندازه یک نقطه کوچک هم نیست خارج شویم و به سوى اولین لحظات تشکیل عالم برویم. زمانى که نه من و نه شما و نه هیچ موجود زنده اى وجود نداشت. بیش از 13 میلیارد سال پیش تمام انرژى هاى دنیا، یعنى تمام آن چیزى که هم اکنون وجود دارد به صورت اصلى ترین ماده تشکیل دهنده انرژى در یک نقطه وجود داشت. (در طول مقاله از واژه هاى کیهان و عالم

استفاده مى شود که هر دو به یک معنا است. ) این نقطه با انفجارى بزرگ منفجر شد و انرژى خود را در تمام جهات پخش

کرد. این لحظه راBig Bang (انفجار بزرگ) و در معادل فارسى«مهبانگ» مى گویند. پس از انفجار بزرگ تمام انرژى هاى دنیا که در یک نقطه جمع شده بود در تمام جهات پخش و گسترده شد که اکنون نیز ادامه دارد. به زبان ساده دنیا از زمان انفجار بزرگ

تا اکنون در حال انبساط (باز شدن) است. پس از دو دقیقه با همجوشى پروتون ها و نوترون ها، دوتریوم درست شد. پس از سه دقیقه، هلیوم از همجوشى دوتریوم، پروتون ها و نوترون ها پدیدار شد. در آن موقع چگالى جرمى ماده از چگالى ماده معادل انرژى فوتون ها کمتر بوده است، در حالى که هم اکنون چگالى جرمى ماده از چگالى ماده معادل انرژى فوتون ها بیشتر است. در ابتداى تشکیل عالم نوترون ها، پروتون ها و الکترون ها تنها سهم ناچیزى از مقدار ماده را داشتند و این فوتون ها بوده اند که انحناى فضا- زمان را به وجود مى آوردند.
صدهزار سال پس از تشکیل عالم، دماى کیهان هشت هزار کلوین بود در حالى که نهصد هزار سال بعد دماى دنیا به سه هزار درجه کلوین کاهش یافت. در این زمان به دلیل افت دما و خنکى نسبى اى که به وجود آمده بود پروتون ها و الکترون ها با یکدیگر درهم آمیخته شدند تا این که اتم هاى خنثى هیدروژن را به وجود آوردند. کیهان در این زمان(یک میلیون سالگى) براى نخستین بار شفاف شد که با وقوع شفافیت فوتون هاى زمینه میکروموجى کیهانى در تمام عالم گسترش یافتند. در این هنگام قسمت هایى از کیهان که مقدارى از میانگین چگال تر بودند تبدیل به خوشه ها، ابرخوشه ها و کهکشان ها شدند و قسمت هاى کوچک و کم تراکم تر باقیمانده تبدیل به فضاى میان ابرخوشه ها شدند. طى یک دوره چند میلیون ساله ابر هاى گازى به وجود آمدند که هسته اولیه تشکیل ستارگان بودند. کهکشان راه شیرى در یک ابر چرخنده کم سرعت از هیدروژن و هلیوم که در حدود 100 کیلوپارسک (326 سال نورى) پهنا دارد تشکیل شد. البته هنوز معلوم نیست که کهکشان ما از یک ابر بزرگ گازى تشکیل شده یا آن که از تعدادى ابرهاى کوچک که با یکدیگر درهم آمیخته شده اند. در سیر تکمیلى و گسترش

عالم در مرکز کهکشان راه شیرى دو مرکز بسیار پرانرژى که سیاهچاله هستند به وجود آمد که به نوعى نقطه تعادل و جاذبه گردشى کهکشان است. بیش از 5/4 میلیارد سال پیش منظومه خورشیدى ما در درون یکى از ابرهاى گازى کهکشان راه شیرى متولد شد. در ابتدا بخش هایى از این ابر بزرگ شروع به متراکم شدن کرد و بر اثر کشش گرانشى فشرده شد تا به صورت یک توده کروى شکل درآمد. پس از صد هزار سال خورشید به صورت یک کره بسیار کوچک متولد شد. خورشید کوچک

 

 

 

 

 

مدام داغ تر و گرم تر مى شد و به سرعت به دور خود مى چرخید و از خود ماده در فضا رها مى کرد. پس از مدتى خورشید به دوران بلوغ خود رسید. در این دوره اولین انفجارهاى هسته اى خورشید آغاز شد که سبب درخشش این ستاره بزرگ مى شد. خورشید از ابتداى پیدایش خود تاکنون مدام در حال تبدیل ماده به انرژى است. حلقه هایى از موادى که از خورشید

 

 

 

 

 

 

 

 

 

جدا مى شدند کم کم به صورت اجرام کوچکى درآمدند و پس از مدتى بر اثر گرانش بسیار بالاى خورشید در مدار هایى متفاوت شروع به چرخیدن کردند. این اجرام که توده هاى کوچک چرخانى در میان توده هاى بزرگى از گاز و غبار بودند پس از طى چندین میلیون سال تبدیل به سیارات بزرگ و کوچکى شدند که امروزه به نه نام مختلف همچنان به دور خورشید بزرگ

 

 

در حال گردش هستند. هر نه سیاره منظومه خورشیدى در نه مدار مختلف و در فاصله هاى معینى از خورشید قرار دارند که به ترتیب از اولین سیاره نزدیک به خورشید عبارتند از «عطارد، زهره، زمین، مریخ، مشترى، زحل، اورانوس، نپتون و پلوتو.»
یوهان کپلر قوانین سه گانه اى را کشف و براى حرکت سیارات وضع کرده است که شامل مواد ذیل است: 1-همه سیاره ه

 

ا در یک مدار بیضى شکل به گرد خورشید مى چرخند. 2- هر سیاره اى که در گردش خود نزدیک به خورشید مى رسد، سرعتش بیشتر مى شود. 3- بین مسافت و دورى سیاره از خورشید با زمانى که مدار خود را مى پیماید، نسبت خاصى برقرار است.
سیاره«پلوتو» که در دورترین فاصله خود از خورشید هفت میلیارد کیلومتر از آن فاصله دارد زاویه مدارى متفاوتى نسبت به دیگر سیارات دارد. مدار تمامى سیارات منظومه خورشیدى تقریباً موازى با خورشید است اما مدار پلوتو در حدود 40 درجه از مدار دیگر سیارات به دور خورشید، داراى انحنا است. آخرین سیاره منظومه خورشیدى «پلوتو» به دلیل فاصله بسیار زیادى که با زمین دارد تا سال 1930 کشف نشده بود تا این که در همین سال «کلاید تومبا» ستاره شناس آمریکایى توانست آن را رصد کند. کمترین فاصله پلوتو با زمین چهار میلیارد و سیصد میلیون کیلومتر است. اما کلوخه هاى کوچکترى که از خورشید جدا شده بودند تبدیل به اقمار سیارات و کلوخه هاى کوچک تر از آن ها نیز تبدیل به سیارک ها شدند. تاکنون تنها در حدود 110 سیاره دیگر کشف شده است که به دور ستاره اى همانند خورشید در حال گردشند. سیاراتى که تاکنون کشف شده اند در فاصله هاى بسیار دورى از زمین قرار دارند و تقریباً در اندازه هاى مشترى و زحل هستند.
دنیاى پهناور ما همچون بادکنکى که در حال باد شدن است مدام در حال بزرگ شدن است و هر روز بر پهناى آن افزوده مى شود. بر طبق قانون هابل کهکشان هاى دوردست با سرعتى به تناسب دوریشان از ما فاصله مى گیرند، بنابراین کیهان به طور یکنواخت در حال انبساط است. البته بایستى بدانید که کهکشان ها خود در حال انبساط و بزرگ شدن نیستند بلکه این فضا- زمان است که منبسط مى شود و کهکشان ها را با خود مى برد. براساس این قانون اگر عالم باز یا مستوى باشد، انبساط تا بى نهایت ادامه دارد و اگر بسته باشد انبساط متوقف شده و عالم شروع به رمبش (انقباض) مى کند. چون گرانش از سرعت انبساط عالم مى کاهد ممکن است که روزى پیروز شود و موجب توقف گسترش عالم و در نتیجه فروریختن کیهان در خود شود. براى درک بهتر مثالى بیان مى کنیم: سرعت گریز از زمین 4/11 کیلومتر بر ثانیه است. حال اگر موشکى با سرعت کمتر بخواهد از جو زمین خارج شود جاذبه زمین این اجازه را به او نمى دهد و موشک به سمت زمین باز مى گردد. پس اگر سرعت نسبى دو کهکشان از سرعت گریزشان کمتر باشد روزى انبساط پایان یافته و کیهان شروع به انقباض مى کند و اگر سرعت گریزشان بیشتر باشد انبساط عالم ادامه خواهد داشت. براى رسیدن به پاسخى قطعى درباره سرنوشت عالم ما،

در ابتدا بایستى به چگونگى پیدایش آن پى برد. هم اکنون گروهى از دانشمندان فیزیک در حال بررسى زمان صفر انفجار بزرگ از طریق «نظریه ریسمان ها» هستند. نظریه ریسمان ها فرضیه اى نوین و جدید است که هنوز به صورت تجربى ثابت نشده است. بر طبق این نظریه، عالم در رده اى بنیادى تر از رشته ها با ریسمان هایى ساخته شده که با فرکانس هاى مختلف ارتعاش مى کنند. پژوهش درباره ماهیت انفجار بزرگ به ظاهر تنها از طریق نظریه ریسمان ها امکان دارد اما زمان پاسخ به چنین پرسشى سخت و دشوار که بزرگ ترین معماى عالم است هرگز معلوم نخواهد بود.

ستاره‌ها را کمابیش همیشه می‌توان به همراه گاز، غبار و «ماده تاریک» در مجموعه‌هایی به نام کهکشان یافت. 10 تا 20 درصد هر کهکشان از ستارگان، گاز و غبار تشکیل شده است. نیرویی که یک کهکشان‌ را برپا نگاه میدارد و از پراکنده شدن آن جلوگیری می‌کند نیروی گرانش است. اجزاء کهکشانی همگی گرد یک کانون مشترک گردش دارند. از برخی نشانه‌ها چنین برمی‌آید که ممکن است در کانون برخی، یا حتی بیشتر کهکشان‌ها سیاهچاله‌هایی وجود داشته باشد. یک کهکشان در آغاز یک نیاکهکشان است که پس از تکامل به صورت یک کهکشان درمی‌آید.

واژه کهکشان از دو واژه فارسی «کاه» و «کشان» ترکیب یافته و علت این نامگذاری تمثیل این پدیده‌های اخترشناختی به حالتی است که خرمنی از کاه بر روی زمینه‌ای سیاه کشیده شده و کاهدانه‌ها (ستارگان) بر روی آن پراکنده گردیده‌اند.
تاریک‌ترین کهکشان کم نورترین و کوچکترین کهکشان دنیا در نزدیکى کهکشان معروف آندرومدا(M31) قرار دارد.
این کهکشان تاریک آندرومدا IX، یک کهکشان کروى کوتوله و بسیار کم نور با قطر 3000 سال نورى است که

در نزدیکى کهکشان آندرومدا(M31) و در فاصله تقریبى 5/2 میلیون سال نورى از زمین قرار دارد. این کهکشان کوتوله داراى کمترین روشنایى سطحى در میان کلیه کهکشان هاى شناخته شده است و روشنایى آن 100 هزار بار کمتر از کهکشان راه شیرى است.

کشف کهکشان آندرومدا IX با استفاده از تلسکوپ 5/2 مترى آیزاک نیوتن واقع در جزایر قنارى شناخته شد. کشف کهکشان «آندرومدا IX» کمک مهمى به ستاره شناسان براى حل مسئله ماده تاریک در عالم است.

در تعریف ماده تاریک باید گفت که جرم قابل رویت کهکشان ها و خوشه هاى کهکشانى، تنها یک دهم میزانى است که از روى حرکت آنها و قواعد دینامیکى محاسبه مى شود. به عبارت دیگر ستاره شناسان هم اکنون تنها حدود 10 درصد جرم «موجود» در کیهان را مى توانند رصد کنند.

براساس نظریه هاى کیهان شناختى، ماده تاریک در جریان انفجار بزرگ (Big Bang) به وجود آمد و با انبساط جهان، بهصورت توده اى شکل درآمد و بدین ترتیب، بذر اولیه کهکشان ها در عالم پاشیده شد. اما بعد از آن، ماده قابل رویت موجود در عالم، به علت سرد شدن بیش از اندازه، توسط ماده تاریک جذب شد.

با توجه به محاسبات صورت گرفته در مورد مقدار ماده تاریک موجود در عالم، تعداد کهکشان هاى اقمارى کهکشان هایى مانند کهکشان راه شیرى و آندرومدا (M31) بایستى 100 برابر بیشتر از تعدادى باشد که ستاره شناسان تاکنون موفق به کشف آنها شده اند. کشف کهکشان کوتوله و کم نور «آندرومدا IX» در اطراف کهکشان آندرومدا، ممکن است بخشى از مسئله ماده تاریک عالم که قبلاً قابل رویت نبود را حل کند
اشکال کهکشانها
اشکال کهکشانها بر اساس شیوه‌ای طبقه بندی می‌شود که طبق

شیوه طبقه بندی ستاره شناس آمریکایی ، ادوین هابل (1953- 1986) ، شکل یافته است. در مورد تکامل کهکشانها اطلاعات قطعی کمی در دست است. تنها مطلب مورد اطمینان این است که کهکشانها میلیاردها سال پیش به شکل توده‌ای از ابرهای گازی و غباری بوجود آمدند.

کهکشان بیضوی
کهکشانهای نامنظم هیچ شکل یا ساختار منظمی ندارند، آنها دارای جرم بیشتری از کهکشانهای دیگر هستند و بیشتر ستاره‌های موجود در آنها دارای طول عمر کم و درخشان می‌باشند. با وجود اینکه بسیاری از کهکشانهای نا منظم در بر گیرنده نواحی تابان گازی هستند که ستاره‌ها در آنها شکل می‌گیرند، بیشتر گاز میان ستاره ای کهکشانها بایستی متراکم شوند تا ستاره‌های جدیدی بوجود آورند. حدود 5% از هزار کهکشان درخشان را کهکشانهای نا منظم تشکیل می‌دهند. این در حالی است که یک چهارم کهکشانهای شناخته شده نیز کهکشانهای نامنظم هستند.
کهکشانهای مار پیچی
کهکشانهای مارپیچی دارای بازوهایی هستند که شکلی مارپیچی در اطراف بر آمدگی مرکزی یا هسته ، قرصی ایجاد می‌کنند که چرخش هسته با چرخش بازوهای آن همراه می‌شود. جوانترین ستاره‌های کهکشانهای مارپیچی در بازوهای کم توده یافت می‌شوند و ستاره‌های کهن اکثرا در هسته متراکم قرار دارند. کهنترین ستاره‌ها در هاله‌های کروی پراکنده قرار دارند و اطراف قرص کهکشانی را فرا گرفته‌اند. بازوهای مذکور همچنین دارای غبار و گاز فراوانی هستند که منجر به تشکیل ستاره‌های جدید می‌شود.

کهکشان مارپیچی میله ای
یک کهکشان مارپیچی میله‌ای دارای یک هسته برآمدگی مرکزی کشیده شده و میله‌ای شکل است. همزمان با چرخش هسته اینطور به نظر می‌رسد که در هر سوی هسته یک بازو نیز می‌چرخد. برخی ستاره شناسان عقیده دارند کهکشان راه شیری نیز یک کهکشان مارپیچی میله‌ای است. شکل کهکشانهای مارپیچی و کهکشانهای مارپیچی میله‌ای متغیر است.
از کهکشانهای با برآمدگیهای مرکزی بزرگ با بازوهای نه چندان بهم پیوسته تا کهکشانهای با برآمدگیهای مرکزی کوچک و بازوهای آزاد. گر چه کهکشانهای مارپیچی و مارپیچی میله‌ای پیش از این به عنوان دو نوع کهکشان متفاوت طبقه بندی می‌شدند، ولی امروزه ستاره شناسان آنها را مشابه می‌دانند.
کهکشانهای بیضوی
کهکشانهای بیضوی از نظر شکل ، از شکل بیضی‌گون (شبیه توپ فوتبال امریکایی) تا شکل کروی متغیر هستند و اشکالی ما بین این دو نیز یافت می‌شوند. بر خلاف کهکشانهای دیگر که نوری آبی از ستاره‌های فروزان و کم عمر منعکس می‌کنند، کهکشانهای بیضوی زرد رنگ بنظر می‌رسند. علت این امر توقف شکل گیری ستارگان در این کهکشانها می‌باشد که در نتیجه تقریبا تمام نور آنها از ستاره‌های غول سرخ که دارای طول عمر زیادی هستند تأمین می‌شود.

کهکشانهای فعال و غیر عادی
از تمام کهکشانها میزان معینی تشعشع الکترومغناطیسی ساطع می‌شود. برخی کهکشانها ، به طرز غیر عادی ، مقادیر زیادی تشعشع تابش می‌کنند. این کهکشانها ، کهکشانهای فعال نامیده می‌شوند. انرزی آنها از منبعی با جرم بسیار زیاد اما به هم فشرده که در مرکز کهکشان فعال قرار دارد تأمین می‌شود.
انرژی اغلب بصورت اشعه ایکس ، موج رادیویی و همچنین نور است و میزان انرژی آزاد شده به قدری زیاد است که نمی‌توان تصور کرد ستاره‌ها آنرا بوجود آورده باشند. ستاره شناسان بر این عقیده اند که تنها جسمی که قادر است این مقدار انرژی را ازاد کند یک حفره سیاه فوق العاده پر جرم است. بنابر این، علت اینکه برخی کهکشانها از جمله کهکشان خودمان انرژی نسبتا کمی آزاد می‌کنند این است که حفره سیاه مرکزی کوچکی را در میان گرفته‌اند.

کوازارها
بنظر می‌رسد که کوازارها (شبه ستاره‌ها) هسته فعال کهکشانهای دور دست باشند. آنها درخشانترین ، سریعترین و دورترین اجرام شناخته شده در جهان هستند. کوازارها همانند ستارگان از سطح زمین به مثابه یک نقطه نورانی خیلی ریز دیده می‌شوند. اگر چه کوازارها فقط به اندازه منظومه شمسی هستند، نور برخی از آنها مسافتی در حدود 10 میلیارد سال نوری را طی می کند تا به ما برسد. ما برای اینکه بتوانیم چنین اجرام دوری را شناسایی کنیم نیاز به تابش زیاد نور آنها داریم. تشعشع انرژی بعضی از کوازارها حدود 100 برابر تشعشع کهکشانهای عظیم است.

با گسترش جهان کوازارها که در لبه خارجی آن قرار دارند بسرعت از زمین فاصله می‌گیرند. دورترین کوازارهایی که قابل رویت حدود 12 میلیارد سال نوری در جهت انتهای قابل مشاهده جهان قرار دارند. بخاطر زمان زیادی که طول می‌کشد تا نور کوازارها به زمین برسد، این کهکشانها ستاره شناسان را قادر می‌سازند تا جهان را در اولین مراحل شکل گیری ، مورد مطالعه قرار دهند. کوازارها فوق العاده درخشان و در عین حال بسیار مهم فشرده می‌باشند. در مقایسه با گستره کهکشان راه شیری که 100000 سال نوری می‌باشد، کوازارها قطری معادل چند روز یا هفته نوری را تشکیل می‌دهند.

کهکشانهای رادیویی
تمامی کهکشانها ، موج رادیویی ، نور قابل رویت و انواع تشعشع از خودشان تولید می‌نمایند. انرژی رادیویی یک کهکشان رادیویی خیلی متراکمتر از انرژی کهکشانهای معمولی است. این انرژی از دو قطعه خیلی بزرگ ، یا ابرهای عظیم الجثه متشکل از ذرات در حال دور روشن از کهکشانها تشتشع می‌یابند.

این ابرهای عظیم از فورانهای گازی که از مرکز کهکشان با سرعتی معادل یک پنجم سرعت نور خارج می‌شوند، در آسمان شکل می‌گیرند. به نظر می‌رسد که فوران این انرژی عظیم توسط یک حلقه پیوستگی صورت می‌گیرد که یک حفره سیاه خیلی متراکم را در بر می‌گیرد و در مرکز کهکشان واقع است. از هر یک میلیون کهکشان فقط یکی از آنها یک کهکشان رادیویی است.

تصادم کهکشانها
بیشتر کهکشانها از کهکشانهای همسایه خود صد هزار سال نوری فاصله دارند. به هر حال، بعضی از کهکشانها تا اندازه‌ای به یکدیگر نزدیک می‌شوند که نیروی جاذبه دو طرفه آنها اشیاء موجود در کهکشانها دیگر را به اطراف خود می‌کشد و این امر باعث بوجود آمدن توده‌هایی به نام دنباله‌های کشندی می‌گردد، که این دنباله‌ها مانند پلی کهکشانها را به یکدیگر وصل می‌نمایند. نزدیکی بیش از حد کهکشانها ممکن است، توأم با تصادم آنها گردیده و به دنبال این عمل یک تغییر شکل بنیادی در شکل ظاهری آنها صورت پذیرد.

کهکشان راه شیری
در شبی تاریک و صاف ، ستارگان چنان می‌درخشند که گویی می‌توان با دست آنها را لمس کرد. در واقع بیشتر ستارگان قابل دید برای چشم غیر مسلح ، در محدوده یک هزار سال نوری واقع هستند. گذشته از ستارگان چشمک زن ، نواری مه مانند و کم نور در سرتاسر آسمان کشیده شده است که به آن راه شیری می‌گوییم. این مه حفره فام ، دهها هزار سال نوری با ما فاصله دارد. با دوربین دو چشمی یا تلسکوپ کوچک ، به صورت اجتماع انبوهی از هزاران هزار ستاره کم نور دیده می‌شود. گرچه این ستارگان بسیار دور دست هستند، ولی مجموع نور آنها را می‌توان با چشم دید.

مشخصات کهکشان راه شیری
کهکشان راه شیری ، کهکشانی مارپیچی است که شامل حدود 500 میلیارد ستاره است. این کهکشان حدود 10 میلیارد سال پیش ، از یک ابر عظیم گاز و غبار تشکیل یافت. در قسمت مرکزی کهکشان راه شیری هسته‌ای کروی قرار دارد که ممکن است شامل یک حفره سیاه نیز باشد. هسته توسط گروهی از دنباله‌های مارپیچی در برگرفته شده است. این دنباله‌ها از ستاره‌های فروزان تازه شکل یافته تشکیل شده‌اند. هسته و قرص کهکشان با هاله‌ای از ستاره‌هایی با طول عمر بسیار زیاد ، در بر گرفته شده‌اند.
قطر هسته یک کهکشان در حدود 10000 سال نوری است. قسمت احاطه کننده هسته دارای قطری برابر با 100000 سال نوری و ضخامتی برابر با 1000 سال نوری است . هاله کهکشان دارای قطری تا 50000 سال نوری است. منظومه شمسی (شامل ابر اوپتیک-اورت) با عرضی برابر با سه سال نوری نسبتا کوچک به نظر می‌رسد. خورشید با سرعتی حدود 220 کیلومتر (135 مایل) در ثانیه ، مرکز کهکشان را در مدت زمانی حدود 250 میلیون سال دور می‌زند. تا کنون خورشید 15 تا 20 دور به گرد هسته کهکشان چرخیده است.

گذر صورتهای فلکی از راه شیری
بیرون از راستای راه شیری تعداد بسیار کمی ستاره کم نور وجود دارد. بطوری که درخشش مبهمی نیز از آنها آشکار نمی‌شود. به علت آنکه راه شیری دایره کاملی در سرتاسر آسمان تشکیل می‌دهد، در هر نقطه روی زمین می‌توان بخشهایی از آن را دید. چند صورت فلکی مهم که راه شیری از میانشان می‌گذرد، شامل ذات الکرسی ، پرساوس ، ممسک الاعنه (ارابه ران) ، تکشاخ ، بادبان ، صلیب ، عقرب ، قوس ، دلو و دجاجه است.
فراوانی میدان ستاره
انبوهترین میدان ستاره‌ای ، در راه شیری جنوبی قرار دارد که منظر زیبایی در آسیای جنوبی و آفریقایی جنوبی بوجود می‌آورد. برای رصد کنندگان واقع در نیمکره شمالی ، بهترین حالت راه شیری اواخر تابستان دیده می‌شود. هنگامی که دجاجه را بتوان در بالای سر دید.
ماهیت راه شیری
ما منظره کهکشان عظیم و پرستاره‌ای را که درون آن زندگی می‌کنیم، به صورت راه شیری می‌بینیم. در کهکشان ما ، احتمالا صد هزار میلیون ستاره وجود دارد. ما در میان این کهکشان هستیم و به همین دلیل نمی‌توانیم شکل کلی آن را به آسانی تجسم کنیم. در واقع ، کهکشان راه شیری ، شبیه یک چرخ فلک غول پیکر است و دو بازوی پرستاره دارد، که چندین بار به دور بخش مرکزی پیچیده‌اند. طول کهکشان ما 100000 سال نوری است. 30000 سال طول می‌کشد تا یک پیام رادیویی از زمین به مرکز آن برسد. اگر ستارگان کهکشان را با سرعت سه ستاره در یک ثانیه بشماریم، هزار سال طول می‌کشد.

قسمت نورانی راه شیری
روشن ترین بخش راه شیری در صورت فلکی قوس است. تلسکوپهای رادیویی فروسرخ ، علامتهای پرقدرتی از این منطقه آشکار می‌کنند. شاید درمرکز بیظلم کهکشان ما ، یعنی نقطه‌ای در راستای صورت فلکی قوس ، سیاهچاله بسیار بزرگی وجود داشته باشد که آزادانه ستارگان و سیاره‌ها را می‌بلعد و توده انبوهی از آنها را در کنار هم جمع می‌کند.

عکس اشعه X از کهکشان راه شیری توسط ناسا

تغییر صورتهای فلکی
چرخش آرام کهکشان ما که در آن بخشهای مرکزی پیوسته از قسمتهای بیرونی پیشی می‌گیرند، به این معنی است که ستارگان نیز بطور مداوم در پهنه آسمان حرکت می‌کنند. در چند میلیون سال آینده ، منظره صورتهای فلکی در نتیجه این حرکت بی وقفه ستارگان تغییر حالت خواهد داد.
کهکشان امراه المسلسله
در گروه محلی کهکشان ها، کهکشان بزرگ امراه المسلسله (که به M31یا NGC224 نیز معروف است) شایسته توجه است – توجهی که معلول شباهت بسیار زیاد آن به کهکشان ماست و درباره آن اطلاعاتی در اختیار ما قرار می دهد.
این کهکشان، اگر چه اندکی بزرگتر از کهکشان ماست، ولی از فاصله 2،000،000 سال نوری چون لکه ابر مانند کم سویی از قدر ظاهری 3/4 به چشم برهنه می آید.
زیبایی این کهکشان، در عکسهایی آشکار می شود که با زمان عکسبرداری طولانی گرفته شده اند. در این عکسها کهکشان چون قرص بیضوی کم ضخامتی به نظر می رسد که با خط دید زاویه 15 درجه می سازد. مرکز بیضی فوق العاده پرنور است و با دو بازوی مارپیچی احاطه شده است که بیش از چهار بار هسته را دور می زنند. بازوها شامل تعداد زیادی سحابی است.
تفکیک بازوهای مارپیچی به ستارگان منفرد مدتها پیش در 1923 صورت گرفت،اما تلاشهایی که برای تشخیص ستارگان مجزا در بخش مرکزی به عمل آمد تا بیست سال بعد از آن، نافرجام ماند. مرکز کهکشان در همه عکسها به صورت توده روشنی بود بدون هیچ گون جزئیات.
توده روشن مرکزی در 1943 با موفقیت تفکیک شد.برای این کار به جای صفحات عکاسی معمولی که تا آن زمان به کار برده می شد و نسبت به نور آبی حساس بود، از نوع جدیدی صفه عکاسی که نسبت به نور سرخ حساس است استفاده شد. بر روی این نوع جدید صفحات عکاسی، ستارگان به وضوح تمام به واحد های متمایزی تفکیک شدند. این کشف پیامد های تازه ای نیز داشت که مهم ترین شان این بود که ستارگان را می توان به دو گروه کلی تقسیم کرد: جمعیت های ستاره ای و جمعیت های ستاره ای .
ستارگان جمعیت معمولا در بازوهای کهکشان های مارپیچی و نیز در کهکشان های نامنظم نظیر ابرهای ماژلانی یافت می شوند. صفت ممیزه این گروه از ستارگان اینست که رنگ آنها آبی و دمای سطحی آنها زیاد است.
ستارگان جمعیت معمولا در خوشه های کروی، کهکشان های بیضوی و نیز در مراکز کهکشان های مارپیچی یافت می شوند. پرنورترین ستارگان این گروه، آبی رنگ و سوزان نیستند بلکه سرخ و سردند.

در بیست سال گذشته بیش از یکصد ابرنواختر در کهکشان امراه المسلسله کشف شده اند که بیشتر آنها نزدیک به مرکز کهکشان بوده اند. اما چیزی که شایسته توجه خاص است ابر نو اختری که در 1885 مشاهده شد.
این کهکشان با سرعتی نزدیک به 300 کیلومتر در ثانیه به خورشید نزدیک می شود ولی بخش اعظم این سرعت مربوط به دوران کهکشان خود ما است که منظومه شمسی را با سرعت نزدیک به 320 کیلومتر در ثانیه به کهکشان امراه المسلسله نزدیک می کند.
سحابی
در جهان علاوه بر ستاره‌ها مقادیر زیادی گرد و غبار و گاز وجود دارد که مابین کهکشانها پراکنده گردیده است. یعنی چگالی گاز در فضای بین کهکشانها فقط برابر 20 اتم در هر اینچ مکعب است. برای مقایسه می‌توان آنرا با تعداد اتمهای موجود در هوا بر روی زمین و در سطج دریا برابر 10 در هر اینچ مکعب است، مقایسه کرد. سحابی ، ابر یا هر چیز دیگری است که از گرد و غبار و گاز میان ستاره‌ای تشکیل شده است. سحابیهای تابان ابرهایی گازی هستند که به علت نور ستارگان مجاور خود قابل رویت هستند.

سحابی سر اسب
سحابی تاریک سر اسب ، روی سحابی
تابانی که در پشتش قرار دارد، سایه می‌اندازد.

بعضی از سحابیها تاریک بوده و تنها هنگامی که مانع عبور نور ستارگان یا سحابیهای تابان پشتشان می‌شوند، می‌توان آنها را دید. خیلی چیزهایی که زمانی سحابی نامیده می‌شدند، از نو طبقه بندی شده‌اند. در قرنهای پیشین این اشیاء در نظر ستاره شناسان ساختارهای ابر مانند مه آلود بودند، ولی بعدا ستاره شناسان با بهبود تلسکوپها توانستند این به ظاهر سحابیها را به عنوان کهکشان یا خوشه‌های ستاره‌ای شناسایی کنند.

سحابیهای تاریک
سحابی تاریک ابری از گرد و غبار و گاز است که گازش نور میدانهای ستارگان یا سحابیهای تابان پشت سرش را که از این ابر می‌گذرند، جذب می‌کند. سحابیهای تاریک ، که به سحابیهای جذبی نیز معروفند، هیچ تشعشعی از خود ندارند، ولی ممکن است نورهای جذب شده را به شکل امواج رادیویی یا انرژی مادون قرمز دوباره بتابانند. شاید جرم سحابیهای تاریک چندین هزار بار از جرم خورشید بیشتر باشد. اگر یک سحابی به اندازه کافی جرم داشته باشد، در نقطه‌ای از زمان موادش فشرده شده و تبدیل به ستاره می‌شود. شاید سپس سحابی تاریک با ستارگان جوان گرم حرارت ببیند و به سحابی نشری درخشانی تبدیل شود.
سحابیهای سیاره‌ای
ستارگان غول سرخ در اواخر عمرشان لایه‌های گازی بیرونی شان را به دور می‌اندازند. این لایه‌ها پوسته منبسط شونده‌ای از گازهای تابان را تشکیل می‌دهند که سحابی سیاره‌ای نامیده می‌شوند. علت این نامگذاری این است که ویلیام هرشل ، منجم آلمانی الاصل (1822 – 1783) ، تصور کرد که این پوسته‌ها شبیه سیاره‌اند. شاید از دید ناظر زمینی ، این پوسته گازی به شکل ساعت شنی ، حباب یا حلقه به نظر آید. این سحابی با سرعت تقریبی 20 کیلومتر (12 مایل) در ثانیه رو به بیرون حرکت می‌کند و بعد از 35 هزار سال در محیط میان ستاره‌ای پراکنده خواهد شد.

سحابی دمبلی
این تصویر کامپیوتری ، سحابی‌ای را به
شکل ساعت شنی نشان می‌دهد که از
گازهای دفع شده ستاره مرکزی ایجاد شده است.
امواج انفجاری
موجهای ضربه ای انفجار ابر نواختر با سرعت هزاران کیلومتر در ثانیه در محیط میان ستاره‌ای سیر می‌کنند. این موجهای ضربه‌ای مواد میان ستاره‌ای را آشفته می‌کنند و شاید فرآیند فرو ریزش گرانشی را که سرانجام باعث تشکیل ستارگان در ابرهای میان ستاره‌ای می‌شود، آغاز می‌کنند. از هنگام اختراع تلسکوپ ، هیچ ابر نواختری در کهکشان ما کشف نشده است. اگر ابر نواختری بوجود می‌آمد، تا چندین ماه ، در آسمان به تابناکی ماه می‌درخشید. اگر آن ابر نواختر فرضی به زمین بسیار نزدیک می‌بود، می‌توانست جو زمین را منهدم کند.
سحابیهای تابان
دو نوع سحابی تابان وجود دارد: نشری و بازتابی ، که هر دو با تولد ستاره ارتباط دارند. گازهای سحابی نشری عمدتا در بخش قرمز یا سبز طیف می‌تابند، زیرا با حرارت ستارگان جوان گرم درون سحابی گرم شده‌اند. غبار سحابی ، نور ستارگان جوان داخل و اطراف سحابی بازتابی را پراکنده می‌کند. دو نوع سحابی تابان دیگر نیز وجود دارند: بقایای ابر نواختری و سحابیهای سیاره‌ای. هر دو اینها از مواد دفع شده ستارگان در حال مرگ تشکیل شده‌اند.

 

برای دریافت پروژه اینجا کلیک کنید

دانلود پروژه مقاله کروماتوگرافی کاغذی در word

دوشنبه 95/2/27 2:8 صبح| | نظر

 

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله کروماتوگرافی کاغذی در word دارای 25 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله کروماتوگرافی کاغذی در word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی دانلود پروژه مقاله کروماتوگرافی کاغذی در word ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن دانلود پروژه مقاله کروماتوگرافی کاغذی در word :

کروماتوگرافی کاغذی

اطلاعات اولیه
انواع جداسازی‌های مختلف و ساده بر روی کاغذ به عنوان پیشروان کروماتوگرافی کاغذی توصیف شده‌اند. این سیستم معمولا به عنوان نمونه بارزی از سیستم تقسیمی در نظر گرفته می‌شود که در آن فاز ساکن آب است و به وسیله جذب سطحی بر روی مولکول‌های سلولز قرار می‌گیرد و مولکول‌های سلولز نیز به نوبه خود به وسیله ساختار الیافی کاغذ در وضعیت‌های ثابت نگه داشته می‌شود. امروزه ، به هر حال ، مشخص شده است که جذب سطحی اجزای فاز متحرک و حل شونده‌ها و اثرات تبادل یون نیز نقش‌هایی را ایفا می‌کنند و کاغذ به هیچ عنوان تنها به صورت تکیه گاه بی اثر نیست.

سیر تحولی رشد
روش پیشنهادی رانگ در سال 1850 و فرآیندی که آن را تجزیه موئینه‌ای می‌نامند، از جمله آنها می‌باشند. چنین روش‌هایی در واقع بیشتر شبیه کروماتوگرافی جذب سطحی بودند و کروماتوگرافی کاغذی به مفهوم فعلی ، گسترش سیستم تقسیمی است که به وسیله مارتین و سینج در سال 1941 ارائه شد. در سال 1944 کونسدن ، گوردن و مارتین اسیدهای آمینه و پپتیدهای موجود در محصول آبکافت ، پروتئین پشم را به وسیله روشی جدا کردند که در آن به جای ستون پودر از یک صفحه یا نوار کاغذی آویزان در داخل یک ظرف سرپوش‌دار استفاده شده بود.

کاربرد
در ابتدا کروماتوگرافی کاغذی برای جداسازی مخلوط‌های مواد آلی به کار رفت. ولی بعد از آن ، عمدتا به وسیله برستال و پولارد و همکاران آنها ، برای جداسازی یون‌های معدنی به سرعت به کار گرفته شد. هم آنیون‌ها و هم کاتیون‌ها را به وسیله این روش می‌توان جدا کرد.

خصوصیت ویژه
یک خصوصیت ویژه روش کروماتوگرافی کاغذی این است که چیزی مربوط به محلول یا گاز خارج شده از ستون که در سیستم‌های معمول مایع یا گاز با آن برخورد می‌کنیم وجود ندارد. ترکیبات جدا شده روی کاغذ مکان‌یابی و شناسایی می‌شوند در نتیجه ، جداسازی به طور نسبتا دائم در روی کاغذ ثبت می‌شود. در این روش اجزای جدا شده جمع آوری نمی‌شوند و احتیاجی به وسایل پیچیده کنترل پیوسته نیست. اندازه گیری کمی ترکیبات جدا شده را می‌توان روی کاغذ انجام داد ولی اگر بخواهند اجرای را از کاغذ خارج کنند. تنها کار لازم این است که قسمت مربوط به هر یک از اجسام را از کاغذ ببرند و هر یک را به طور جداگانه بشویند.

طرح کلی روش
قطره‌ای از محلولحاوی مخلوطی که باید جدا شود را روی یک صفحه یا نوار کاغذ صافی در محل علامت گذاری شده قرار می‌دهند. در این محل ، قطره به صورت یک لکه حلقوی پخش می‌شود. وقتی که لکه خشک شده کاغذ را در یک ظرف مناسب سربسته طوری قرار دهند که یک سر آن در حلال انتخاب شده به عنوان فاز متحرک فرو رود. حلال از طریق الیاف کاغذ در نتیجه عمل موئینگی نفوذ می‌کند و نکته مهم این است که سطح کاغذ نباید کاملا به وسیله حلال پوشانده شود. زیرا در این صورت ، اصلا جدا سازی صورت نمی‌گیرد یا نواحی خیلی پخش می‌شوند.

وقتی که جبهه حلال مسافت مناسبی را طی کرد یا بعد از یک زمان از قبل تعیین شده ، کاغذ را از طرف بیرون آورده ، جبهه حلال را با علامتی مشخص می‌کنند و می‌گذارند تا صفحه خشک شود. وقتی که محل‌های مناطق جدا شده آشکار شدند لازم است که هر یک از اجسام به طور جداگانه شناسایی شوند. در موارد ایده‌آل ، هر جسم با واکنشگر مکان‌یاب ، رنگ مخصوصی می‌دهد که در مورد مواد معدنی بیشتر و درمورد مواد آلی کمتر مشاهده می‌شود. ساده‌ترین روش شناسایی بر اساس مقدار Rf یعنی نسبت فاصله طی شده به وسیله جبهه حلال است.

خارج کردن جسم از کاغذ
روش‌های ارائه شده مستلزم به کارگیری یک واکنشگر مکان یاب شیمیایی برای تعیین محل لکه هستند، و لکه‌های رنگی اساس ارزیابی را تشکیل می‌دهند. بعضی اوقات می‌توان کمپلکس را شستشو داد و به وسیله روش رنگ سنجی تخمین زد، ولی اگر تغییر شیمیایی قابل قبول نباشد ماده تغییر نیافته را باید شستشو داد. عمل شستشو را می‌توان با وارد کردن تکه کاغذ در یک حلال ، به وسیله استخراج در یک دستگاه سوکسیله ، یا با استفاده از آرایش خاصی ، که در کاغذ یک جریان نزولی کروماتوگرافی ایجاد می‌نماید، انجام داد. برای جداسازی‌های معدنی تکه‌های کاغذ را می‌توان به صورت خاکستر در آورده ، باقیمانده‌ها را در اسید حل کرد. نتایج این روش به اندازه روش شستشو خوب نیستند. از اینرو محلول‌های به دست آمده را می‌توان به وسیله هر روش مناسبی تجزیه کرد، روش‌هایی که اغلب به دنبال روش‌های کروماتوگرافی به کار می‌روند عبارتند از رنگ سنجی و قطبش نگاری.
پیدا کردن یک روش کروماتوگرافی ، که بتواند به طور کمی تمامی اجزای یک مخلوط را جدا کند، مطلقا ضروری نیست. ارزیابی کمی فلزات با قطبش نگاری و ارزیابی کمی مواد آلی مشکل‌تر از فلزات است زیرا ، برای مواد آلی ، روش‌های موجود برای آزمایش محلول حاصل از شستشو محدودتر هستند. ارزیابی مواد آلی معمولا بر روی کاغذ صورت می‌گیرند و بنابراین ، لازم است که هر جسمی از اجسام دیگر به طور کمی جدا شود.

نقایص کروماتوگرافی کاغذی

• لکه‌های چند تایی :
در کروماتوگرافی یون‌ها فلزی ، اگر دارای آنیونی متفاوت از آنیون موجود در محلول اولیه باشد، ممکن است رقابتی بین آنیون‌ها برای یون فلزی وجود داشته باشد، که در نتیجه دو لکه به دست می‌آید که هر یک از آنها مربوط به یکی از نمکهای فلزی می‌باشد. ممکن است یون فلزی دو کمپلکس متفاوت با حلال ایجاد کند. در جدا سازی‌های آلی ، ممکن است جسم دو شکل متفاوت وجود داشته باشد. به عنوان مثال یک آمینو اسید می‌تواند به صورت کاتیون و یون دو قطبی باشد.

• دنباله دار شدن :
اگر مخلوط یه مقدار زیاد از حد روی کاغذ قرار داده شود، یا سرعت عبور حلال متفاوت باشد، جسم نمی‌تواند برای ایجاد یک لکه مجزا به تعادل برسد. در این صورت این لکه ، در سطح بزرگی از کاغذ پخش شده و از حلال در حال پیشروی عقب می‌ماند. دنباله‌دار شدن ممکن است به سبب اثرات جذبی سطحی تر ایجاد شود.

• اثرات لبه یا کناره :
لکه‌ها خیلی نزدیک به کنار نوار ، ممکن است در امتداد کنار کاغذ پخش شوند، عمل نفوذ ممکن است به علت بالا بودن غلظت موضعی فاز متحرک در آن ناحیه ، و یا به علت بالاتر بودن سرعت تبخیر حلال در کنار کاغذ ، که منجر به اثرات تقسیمی غیرعادی می‌شوند، باشد.

روش کمی کروماتوگرافی کاغذی
کاربرد کمی این روش نه تنها احتیاج به یک جداسازی کمی ، بلکه مکان‌یابی و ارزیابی کمی اجسام موجود نیز دارد. یک جداسازی کیفی رضایت بخش ، الزاما برای کار کمی مفید نیست. اندازه گیری کمی را می‌توان یا با سنجش مقدار جسم موجود در لکه روی کاغذ ، یا با خارج کردن جسم از کاغذ و تجزیه اجزای جدا شده به وسیله روش‌های کمی متداول انجام داد. لکه اولیه از نمونه مناسب روی کاغذ قرار می‌دهند، خشک کردن لکه باید تحت شرایط استاندارد زمان و دما صورت گیرد.
در تهیه حلال باید دقت زیادی روی نسبت‌های اجزای صورت گیرد، برقرار ساختن تعادل باید به طور استاندارد انجام گیرد، طول عبور حلال در تمامی نوبت‌ها یکسان باشد، در طول آزمایش ، دما باید ثابت بماند، و خشک کردن ورقه باید در یک زمان و دمای استاندارد انجام گیرد. واکنشگر مکان‌یاب (در صورت استفاده از لکه‌های رنگی) باید به طریق کاملا تکرارپذیر افزوده شود. و هر عمل بعدی ، مانند خشک کردن یا قراردادن در معرض بخار آمونیاک ، باید در مدت استاندارد انجام گیرد. مقدار جسمی که در یک جداسازی کروماتوگرافی باید روی کاغذ قرار گیرد، متغیر است.

موارد استعمال کروماتوگرافی کاغذی
• منابع علمی مربوط به روش‌های تجزیه‌ای و بررسی ترکیبات طبیعی نشان می‌دهد که کروماتوگرافی کاغذی در هر رشته‌ای کاربرد دارد. با این همه ، این روش هنوز هم در جداسازی‌های مواد با ماهیت زیستی وسیعترین کاربرد را دارد.
• کروماتوگرافی کاغذی اکثرا به عنوان یک وسیله تحقیقاتی به کار می‌رود، و به طور گسترده‌ای در تجزیه‌های روزمره مخصوصا در جداسازی‌های جدیدی که هیچ روش کلاسیک برای آنها وجود ندارد، نیز مورد استفاده قرار می گیرد. روش اخیر در مسائل کلینیکی و زیست شیمیایی ، جداسازی اسیدهای آمینه و پپتیدها در بررسی ساختارهای پروتئین کاربد دارد.
• آزمایش روزمره ادرار و سایر مایعات بدن برای اسید آمینه و قند ، جداسازی بازهای پورین و نوکلئوتیدها در آزمایش اسیدهای نوکلئیک ، جداسازی استرئیدها ، تجزیه عمومی ، تجزیه بسپارها ، تشخیص و ارزیابی فلزات در خاک ها و نمونه های زمین شناسی ، بررسی ترکیبات فنلی در عصاره های گیاهی ، جداسازی آلکالوئیدها ، جداسازی ترکیبات علامت دار به وسیله رادیو ایزوتوپ‌ها ، کروماتوگرافی کاغذی برای جداسازی مواد فرار غیر فعال مانند هیدروکربن‌ها و دیگری جداسازی اسیدهای چرب با فراریت بیشتر مناسب نمی باشد.

نکات بارز کروماتوگرافی کاغذی

روش کروماتوگرافی (صعودی ، نزولی یا افقی)
تصمیم گیری شخص آزمایش‌گر و وسایل موجود در مورد اینکه چه روشی برای یک آزمایش معین باید به کار رود، احتمالا از نکات اولیه است. تناوب خیلی کمی در نتایج به دست آمده از کروماتوگرافی صعودی و نزولی وجود دارد ولی زمان صرف شده متفاوت است. زمان صرف شده عمدتا به نوع حلال و کاغذ بستگی دارد. ولی برای یک مجموعه مشخص کاغذ-حلال روش نزولی سریع‌تر از روش صعودی است. زمان عبور حلال در یک کرومتوگرام نزولی را با بریدن نوار کاغذ به طوری که یک فشردگی در بین مخزن و محل لکه نمونه به وجود آید، می‌توان افزایش داد.
برای جدا سازی‌های دو طرفه یا جدا سازی یک طرفه همزمان (صعودی) تعداد زیادی از نمونه‌های مختلف با همان حلال ، دستگاه قاب مربعی مناسب است. استفاده از ورقه‌ها و مخزن‌های بزرگ‌تر تنها زمانی ضرورت دارد که عبور حلال به مسافت کم برای انجام کروماتوگرافی کافی به نظر نرسد، و در این صورت روش نزولی بهتر خواهد‌ بود. برای جداسازی‌های کمی یا جداسازی‌هایی که در آنها تعادل دیر برقرار می‌شود، به نظر می‌سد که روش نزولی مطلوب باشد، همچنین موقعی که احتیاج به یک آزمایش طولانی باشد این روش بهترین است. زیرا حلال می‌تواند از انتهای کاغذ لبریز شود.
نوع کاغذ
نقش اولیه کاغذ این است که به عنوان نگه دارنده‌ای برای فاز ساکن عمل می‌کند. سرعت عبور فاز متحرک بستگی به گرانروی این فاز داشته و برای یک مخلوط حلال معین ، سرعت بستگی به |ساختار کاغذ|ماهیت فیزیکی کاغذ دارد. اگر برای افزایش چگالی ، الیاف کاغذ نزدیکتر به هم ساخته شوند، مساحت سطح آزاد و اندازه فضاها کاهش می‌یابد و سرعت عبور کم می‌شود. برعکس با ضخیم تر نمودن کاغذ بدون تغییر چگالی ، سرعت عبور افزایش می‌یابد. در انتخاب کاغذ باید تناسبی بین کارایی ماکسیمم و زمان لازم وجود داشته باشد.

انتخاب و تهیه حلال مناسب کروماتوگرافی
حلال متحرک معمولا مخلوطی است که شامل یک جزء اصلی آلی ، آب ، ترکیبات مختلف اضافه شده مانند اسیدها ، بازها یا عوامل کمپلکس کننده برای افزایش حلالیت بعضی از اجسام یا کاهش بعضی دیگر است. ممکن است ضد اکسنده‌ها نیز اضافه شوند. یک حلال معمولا باید ارزان باشد، زیرا غالبا مقدار زیادی از آن مصرف می شود، به طور خالص قابل تهیه باشد، و نباید بیش از حد فرار باشد. زیرا در آن صورت احتیاج به برقراری تعادل با دقت بیشتر است، از طرف دیگر فراریت زیاد باعث می‌شود که حلال از ورقه بعد از آزمایش آسان‌تر خارج می شود و سرعت عبور آن به میزان زیاد تحت تاثیر تغییرات دما نباشد.

تعادل در ظرف انتخاب شده
لازم است بررسی شود که تا چه حد مخلوط حلال اولیه و کاغذ ، قبل از شروع عمل ، باید با محیط در حالت تعادل قرار بگیرند. زمان لازم برای به تعادل رسیدن محیط با حلال بستگی به اندازه مخزن و فراریت حلال دارد. اگر مخلوط‌های خیلی فرار به کار رود، تبخیر از کاغذ سریع‌تر خواهد بود و برقراری تعادل حائز اهمیت است.

تهیه نمونه
نمونه‌های جامد ، مانند خاک‌ها ، یا سلول‌های زیستی یا مواد بافتی را با حلال خیس می‌کنند، یا از بعضی از روش‌های استاندارد استخراج استفاده می‌کنند، نمونه‌های مهم زیادی مانند ادرار یا سایر مایعات زیستی در محیط‌های آبی هستند.

زمان عمل (گسترش) ، و مکان یابی و شناسایی
موفقیت یک جداسازی کروماتوگرافی در نهایت بستگی به فرآیند مکان‌یابی دارد. البته اجسام رنگی به صورت لکه‌های مجزا در آخر آزمایش قابل مشاهده هستند. اجسام بی‌رنگ احتیاج به آشکارسازی شیمیایی یا فیزیکی دارند. کروماتوگرافی‌ها را باید قبل و بعد از اعمال هر روش دیگری به طور عادی زیر نور فرابنفش بررسی کرد. روش فیزیکی که فقط برای مواد رادیواکتیو قابل استفاده هستند، عبارت‌اند از پرتونگاری خودکار و شمارش.
روش‌های شیمیایی آشکارسازی دارای بیشترین اهمیت هستند و واکنشگرهای به کار برده شده را معمولا واکنشگرهای مکان یاب می‌نامند. با انتخاب صحیح واکنشگر ، عمل آشکارسازی و شناسایی را می‌توان به طور همزمان انجام داد. قسمتی از کاغذ را که شامل جسم مجهول است بریده و جسم را با یک حلال مناسب شستشو می‌دهند محلول حاصل را می‌توان به روش شیمیایی بررسی کرد، یا می‌توان یک سری مخلوط را ، که هر کدام از آنها متشکل از جسم شاهد است تهیه نموده و کروماتوگرام آنها را به دست آورد. به جز ماهیت کاغذ و حلال ، عوامل اصلی مؤثر بر جداسازی مواد عبارت ان از: دما ، اندازه ظرف ، زمان عمل و جهت جریان حلال ، موفقیت نهایی آزمایش بستگی به کارایی روش آشکارسازی دارد.

ارزیابی مواد روی کاغذ
• مقایسه چشمی لکه :
محلول‌های شاهد ، دارای مقادیر معلومی از جسم مورد نظر هستند، باید از چندین محلول شاهد با غلظت‌های مختلف استفاده شود، هر یک از این محلول‌ها تمام اجزای موجود در محلول مورد آزمایش را داشته باشند. این روش بستگی به استاندارد کردن خیلی دقیق دارد. در صورت استاندارد کردن ، این روش ، مخصوصا در ارزیابی فلزات ، به طور شگفت آوری دقیق می باشد.
• اندازه گیری فیزیکی لکه‌های رنگی :
برای اندازه گیری مقدار ماده به کمک انعکاس یا به وسیله عبور نور از آنها می‌توان از طیف سنج‌های نوری به طور مستقیم یا با اندکی تغییر استفاده کرد.
• اندازه گیری مساحت لکه :
مساحت لکه متناسب با لگاریتم غلظت ماده در محلول اولیه می‌باشد. اندازه گیری مساحت ، به علت فقدان مرز دقیق مشکل می‌باشد.
• اندازه گیری‌های پرتوزای :
ساده ترین راه آشکار سازی اجسام پرتوزای ، بررسی نوار ، و علامت گذاری محل لکه‌ها می‌باشد.

کروماتوگرافی روش جزء به جزء کردن یک مخلوط براساس قطبیت مولکول ها می باشد.کروماتوگرافی شامل یک فاز متحرک(مخلوط) می باشد که می خواهیم جداسازی نماییم واین مخلوط دریک مایع ویا گاز حل شده است و ازروی یک فاز ساکن عبور می نماید اجسام موجود در مخلوط به علت قطبیت متفاوت با سرعت های مختلف ازروی فاز ساکن می گذرند .
سرعت حرکت هر جزء درمخلوط به چند عامل قطبیت بستگی دارد که مهمترین آنها یک جسم قطبی هم به حلال وهم به فازساکن جاذبه دارد جسمی که کندتر حرکت می کند بیشترین جاذبه رانسبت به فاز ساکن دارد.
کروماتوگرافی انواع گوناگون دارد ازجمله :
1- کروماتوگرافی ستونی :که برای جداسازی های فوق العاده حساس مانند جداسازی ویتامین ها پروتئین ها وهورمون هابه کار می رود. که باروش های دیگربه آسانی جدا سازی نمی شوند. در این روش فاز ساکن شامل یک ستون شیشه ای یاپلاستیکی است. که باماده ای نظیر آلومینیم اکسید کلسیم کربنات منیزیم کربنات زغال فعال شده خاک رس ژل ها و یا بسیاری ازترکیبات آلی دیگر پر شده است. اندازه ذرات فازساکن درگستره( 150 تا 200m ) می باشد. فاز متحرک شامل مخلوط همراه بایک حلال مناسب است که ازبالای ستون اضافه می شود .
2-کروماتوگرافی یونی : دراین مورد ستون رااز رزین تبادل یون پر می کنند. بابه کاربردن رزین مناسب می توان یون های مثبت ویون های منفی راازهم جدانمود .
3- کروماتوگرافی کاغذی : دراین روش به جای ستون شیشه ای از نوارهای کاغذی درظرف سربسته استفاده می شود قطره ای ازمخلوط رابرروی کاغذ گذاشته وانتهای کاغذرادرحلال مناسب قرار می دهند حلال براساس خاصیت موئینگی درکاغذ نفوذ نموده وباعث جداسازی اجزاء مخلوط می شود بردیدن چگونگی این نوع کروماتوگرافی دراینجا کلیک نمایید.
4- کروماتوگرافی لایه نازک: این تکنیک که غالبا درجداسازی مخلوطهای مواد زیست شناختی مختلف به کار می رود بعضی ازتکنیک واصول به کاررفته درکروماتوگرافی ستونی وکاغذی باهم تلفیق شده است .
5- کروماتوگرافی گازی : یک تکنیک کروماتوگرافی برای تجزیه مایعات فرارومخلوط هایی ازگازهاو بخارات می باشد .گازهای که باید تفکیک شوند همراه با یک گاز بی اثر نظیر هلیم درفاز متحرک حمل می شود.

سنتز آسپرین

در زمان های قدیم مردم بر این باور بودند که جویدن پوست درخت بید تب را کاهش میدهد.از زمانی که علائم بیماری ها صریح و واضح تر می شد,مشخص شد که جویدن پوست درخت بید علائم مالاریارا کاهش میدهد.در اوایل قرن نوزدهم مردم به طب گیاهی علاق خاصی پیدا کردند. در سال 1853شیمی دان آلمانی گرهارت ماد جدیدی با نام استیل سالیسیلیک اسید را از سالیسیلیک اسید و استیک آنیدرید تهیه کرد.این سنتز تا حدود زیادی گزارش نشد.شیمی دان آلمانی دیگری به نام کُلب

روش صنعتیِ بزرگتری برای سنتز سالیسیلیک اسید کشف کرد.سالیسیلیک اسید به درمان رایج آرتروز و نقرس تبدیل شد.(البته از سال 1860تا1893)در این سال ها این ماده تجویز بسیار موثری بود.البته این ماده برای دهان,گلو,نای و معده حالت خوش آیندی نداشت.(این ماده برابر 3است)برای این که اثر اسیدی ماده خنثی شود,معمولاً پزشکان نمک سدیم این ماده را تجویز میکردند.البته این نمک تا حدی تهوع آور بود.در سال 1893هافمن روش ستنزی را که گرهارت 40سال پیش کشف کرده

بود دوباره کشف کرد!او گفت احتمالاً اگر این استیلات(آسپرین فعلی)از سالیسیلیک اسید کم شود این ماده بدون از دست دادن خاصیت داروییِ خود حالات بد خود را از دست میدهد!که البته درست هم بود.آسپرین چه کار می کند؟سر درد را کاهش میدهد.(خاصیت ضد درد),تب را کاهش میدهد.(تب بُر),تورم را از بین میبرد و درد مفاصل را که ناشی از روماتیسم

 

و آرتروز میباشد,از بین میبرد.(ضد التهاب)ودفع اسید اوریک را افزایش میدهد.در سال 1982آسپرین دیگر برای زنان بار دار و گودکان تجویز نشد.در سال1984آسپرین به عنوان ماده ای شناجته شد که احتمال انفاکتوس میوکارد وحمل استورک را کاهش می دهد.در ده 80 با توسع دارو های موثر دیگر برای دفع اسید اوریک باعث شد تا آسپرین دیگر برای این مورد نیز تجویز نشود.در سال های اخیر آسپرین را به عنوان یک ماد باز دارنده از سرطان روده استفاده میکنند.rnآیا اثرات فیزیولوژیک

آسپرین اهداف مکانیزم های بیو شیمیایی خاصی را بیان میکنند؟جواب به میزان مداخل آسپرین در تولید prostaglandins ومحصولات آنها thromboxanes بستگی دارد.این ترکیبات به عنوان عوامل سر درد و انبوهش پلاکت ها (که می توانند باعث لختگی خون شوند)وتنگی عروق شناخته میشوند.سنتز آسپرین:-1آماده کردن مواد اولیّه و انجام واکنش:ساختار مولکول آسپرین در سمت چپ آورده شده.انتخاب درست مواد اولیّه مستلزم دانستن مواردی از جمله: در دسترس بودن مواد اولیّه مواد لازم جهت انجام آزمایش و واکنشی که مواد با هم انجام میدهند است.سالیسیلیک اسید(در سمت چپ)به سادگی سنتز میشود و همیشه در دسترس است.تنها سوالی که مطرح است این است که: چگونه می توان Hگروه OHکه مستقیماً به حلق بنزنی وصل است را به CO3CH(استیل) تبدیل کرد؟شیمی آلی یک پروس عمومی برای این جور تبدیلات

دارد.در مورد ما واکنش بین سالیسیلیک اسید و ماده ای انجام میگیرد که بسیار به استیک اسید مربوط است.نام این ماده استیک آنیدرید است.استیک آنیدرید از آب گیری از دو مولکول استیک اسید به وجود می آید. واکنش آن به شرح زیرمیباشد: : لازم به ذکر است که استیک آنیدرید از جمله واکنشگر های بسیار معروف است.هم اکنون ما یک سری مواد اولیّ منطقی و یک واکنش مناسب برای سنتز آسپرین داریم.

مواد اولی ما سالیسیلیک اسید واستیک آنیدرید است.که هر دو موادی ارزان و در دسترس می باشند.واکنش به این صورت است:-2شرایط انجام واکنش:شرایطی که واکنش باید در آن انخام شودبه بعضی ویژگی های واکنشگر ها و محصولات میدهد تا استیک اسید درست کند.درست عکس واکنشی که قبلاً بیان کردیم.سالیسیلیک اسید و آسپرین هر دو جامدندو در دماهای بالای 100درجه ذوب می شوند.آنها در آب سرد تا حدی انحلال پذیر هستند.(22میلی گرم در میلی لیتر و 33میلی گرم در میلی لیتر حدّ اکثر)از این خصوصیات که ما نتیجه می گیریم آب حلال مناسبی برای این واکنش نیست.زیرا

آب در هنگامی که واکنش را پیش میبرد یکی از واکنشگر ها را از بین میبرد.از آنجایی که استیک آنیدرید مایع است,ما می توانیم از این واکنشگر به عنوان حلال هم استفاده کنیم.به این دلیل که واکنش در استیک آنیدریدِ خالص آهسته انجام میشود ما می توانیم از یک اسید قوی به نام سولفوریک اسید به عنوان کاتالیست استفاده کنیم.طبق قانون لوشاتلیه حضور

زیاد استیک آنیدرید باعث می شود که تعادل به سمت دلخواه ما یعنی تولید آسپرین پیش برود.البته ما با گرم کردن نیز رسیدن به تعادل را سرعت می بخشیم.ایزوله کردن محصول:هنگامی که واکنش به مرحل نهایی خود رسید,ما در ظرف

واکنش علاوه بر آسپرین,مقداری از هر دو واکنش دهنده داریم که با هم واکنش ندادند,(البته احتمالاً)و هم چنین استیک اسید وکاتالیست داریم.ما میدانیم که هم آسپرین و هم سالیسیلیک اسید در آب حل می شوند.اگر ما بعد از اتمام واکنش آب به ظرفمان اضافه کنیم,آب با استیک آنیدرید واکنش میدهد و استیک اسید درست می کند.اگر ما از مقدار کمی آب استفاده کنیم قفط مقدار اندکی از آسپرین و سالیسیلیک اسید حل نخواهد شد و این مقدار باقی مانده تشکیل رسوب میدهد.و از آنجا که حلالیت اکثر مواد در آب با کاهش دما کاهش میابد,ما دمای آب را کاهش میدهیم تا از حلالیت آسپرین در

آب کاسته شود.همچنین استیک اسیدی که به عنوان محصول جانبی و هم چنین با اضافه کردن آب به استیک آنیدرید درست شد نیز دیگر در آب حل نمیشود و در مایع باقی میماند.به همین دلیل ما قادریم با صاف کردن محلولمان آسپرین را جدا کنیم.اما باز هم سالیسیلیک اسیدهایی که واکنش نداده بود نیز با آسپرین صاف می شود.میزان سودمندی سنتز و خلوص محصول(بازده):از جمله موضوعاتی که باقی مانده آن است که ما چقدر محصول نهایی یعنی آسپرین تولید کردیم.و این

محصول تولیدی چقدر خالص است.با توجه به مقدار محصولات اولیّه و ثابت تعادل و دیگر فاکتور ها ما میتوانیم حدّ اکثر محصول را محاسبه کنیم و با توجه به آن بازده را حساب کنیم.استوکیومتری واکنش نشان می دهد که 1مول از استیک آنیدریدبا 1مول از سالیسیلیک اسید واکنش میدهد و 1مول آسپرین تولید می کند.ما با ریختن 2گرم سالیسیلیک اسید یعنی

( 0014مول)با این مقدار سالیسیلیک اسید حدّ اکثر مقدار آسپرینی که می توانیم تولید کنیم برابر 2608گرم خواهد بود.به این مقدار,مقدار تئوری می گوییم.اگر به هر دلیلی واکنش کامل نشد ویا مقداری آسپرین را هنگام حل شدن در آب از دست دادیم انتظار داریم محصولمان از مقدار تئوری کمتر شود.به این مقدار, مقدار عملی می گویند.بازده برابر نسبت مقدار عملی به مقدار تئوری است.بازده ما در این آزمایش برابر است با:در این آزمایش که ما انجام دادیم حتی اگر تمام شرایط خوب بود و

محصول در شرایط ایده ال کامل بدست می آمد مقدار آن از 2608بیشتر می شد و لی این به این معنی نیست که بازده ما از 100%بیشتر است.زیرا ما در این محصول مقداری سالیسیلیک اسید نیز داریم.پس برای رسیدن به بازده واقعی لازم است آسپرین را خالص کنیم.خالص سازی محصول نهایی:میدانیم که ممکن است محصول نهایی ما مقداری سالیسیلیلک اسید داشته باشد.البته برای تشخیص وجود سالیسیلیک اسید تست هایی وجود دارد که راجع به آن بحث خواهم کرد.فرض میکنیم محصول ما سالیسیلیک اسید دارد و ما میخواهیم آن را خالص کنیم برای این منظور محصولمان را با اتیل الکل خالص می کنیم.واکنش که در این حالت رخ می دهد واکنش زیر است:این واکنش علاوه بر اتیل سالیلیسیلات یک محصول جانبی

هم دارد که همان آب است.خود آسپرین در اتانول حل میشود ولی با آن وا کنش نمی دهد.با توجّه به همین موضوع می توان آسپرین را دوباره جدا کرد.حال به توضیح تستی می پردازیم که وجود وجود سالیسیلیک اسید را تایید میکند:نام این تست,تست فرّیک کلرید است.تشخیص وجود سالسسیلیک اسید در این تست به وسیل رنگ است. در این تست Fe(H2O)6+3 از این مولکول استفاده میشود.اتم اکسیژن عامل اسیدی عامل هیدروکسیل در سالیسیلیک اسید با هم

تشکیل یک کمپلکس با مولکول مذکور می دهند.این کمپلکس رنگ بنفش شدید دارد.در حالی که در آسپرین خالص OHسالیسیلیک اسید با O-COCH3جایگزین میشود.کمپلکسی که در آسپرین خالص به وجود می آید رنگ زرد کمرنگی دارد. به این ترتیب است که وجود سالیسیلیک اسید دیده می شود. .

سنتز استیل سالیسیلیک اسید (آسپرین)
بوسیله استیله کردن عامل OH در سالیسیلیک اسید براحتی میتوان آسپرین تهیه کرد. این کار به روشهای متفاوتی امکان پذیر است. یکی از این روشها استفاده از استیک انیدرید در محیط اسیدی میباشد که با توجه به نقش کاتالیستی اسید معمولا در حضور استیک اسید یا سولفوریک اسید انجام میشود.

الف) سنتز آسپرین با استفاده از استیک انیدرید:
در یک ارلن 250 میلی لیتری 6 گرم سالیسیلیک اسید را با 9 میلی لیتر استیک انیدرید مخلوط کنید و 4-3 قطره سولفوریک اسید غلیظ به آن اضافه کنید. مخلوط واکنش را ضمن هم زدن در یک حمام آب به مدت 15 دقیقه در دمای 60 درجه سانتیگراد حرارت دهید. آن را سرد کرده و در یک بشر حاوی 100 میلی لیتر آب سرد همراه با هم زدن بریزید. رسوب را با کمک قیف بوخنر صاف کرده و با آب سرد بشویید. پس از خشک کردن راندمان و نقطه ذوب را تعیین کنید.
برای خالص سازی کامل میتوان بر روی محصول در حلال بنزن تبلور مجدد انجام داد. برای این کار، آب حلال مناسبی نمیباشد. پس از تبلور مجدد راندمان و نقطه ذوب را محاسبه نموده و با مرحله قبل مقایسه کنید.

ب) سنتز آسپرین با استفاده از استیل کلراید:
در یک ارلن 250 میلی لیتری 6 گرم سالیسیلیک اسید را در 5 میلی لیتر پیریدین حل کنید. ارلن را در حمام یخ بگذارید و 5 میلی لیتر استیل کلرید را از داخل یک قیف جدا کننده قطره قطره و همراه با بهم زدن شدید به محلول داخل ارلن اضافه کنید. پس از اتمام افزایش، مخلوط واکنش را در یک حمام آب به مدت 5 دقیقه گرم کنید و سپس سرد نمائید. هنگام سرد کردن یک جسم نیمه جامدی تشکیل میگردد که حدود 60 میلی لیتر آب سرد و چند تکه یخ به آن اضافه کنید و مخلوط را به هم بزنید. کریستالها را با قیف بوخنر صاف کرده و با آب سرد بشویید و سپس خشک کنید. نقطه ذوب و راندمان را محاسبه کرده و بروش قبلی خالص کنید.

مشخصات مواد شیمیایی : استانیلید
نام: استانیلید
Acetanilide
نام دیگر: N- فنیل استامید
N-Phenylacetamide
شکل مولکول:
فرمول مولکولی: CH3CONHC6H5
جرم مولکولی (گرم بر مول): 13517
نقطه ذوب (درجه سانتیگراد): 115
درجه احتراق (درجه سانتیگراد): 540
چگالی (گرم بر سانتیمتر مکعب): 122
حالت: جامد
رنگ: بدون رنگ مایل به سفید
pH:
خطرات: مضر

سنتز استانیلید از آنیلین
استیل دار کردن آنیلین با استفاده از استیک انیدرید در محیط اسیدی به سادگی و با راندمان نسبتا خوبی امکانپذیر است. عامل استیله کننده در این آزمایش استیک انیدرید میباشد.
روش کار
10 سی سی آنیلین را به یک بشر حاوی محلولی از 9 سی سی HCl غلیظ در 250 میلی لیتر آب اضافه کنید. مخلوط را کاملا به هم بزنید تا آنیلین حل شود. در صورتی که محلول رنگی بود حدود 2 گرم کربن فعال به آن اضافه کنید و 2 دقیقه بجوشانید و صاف کنید تا محلول شفاف بدست آید.

محلولی از 17 گرم سدیم استات در 50 سی سی آب تهیه کنید.
به محلول آنیلین در اسید کلریدریک (محلول اول) 13 سی سی استیک انیدرید اضافه کرده و به هم بزنید تا محلول همگن به دست آید. محلول حاصل را بلافاصله به بشر حاوی حاوی محلول سدیم استات اضافه کنید. بشر را در حمام یخ گذاشته و بشدت به هم بزنید تا کریستالهای بیرنگ استانیلید جدا شوند. کریستالها را صاف کرده و با آب سرد بشویید و آنها را خشک کنید.

در صورتی که استانیلید رنگی باشد نشانه ناخالصی است. برای خالص سازی، آنرا در حد اقل آب داغ تبلور مجدد نمائید.
راندمان و نقطه ذوب را تعیین کنید.

 

تقطیر
تقطیر، معمولترین روشی است که برای تخلیص مایعات به کار می رود. در این عمل مایع را به کمک حرارت تبخیر می کنند و بخار مربوطه را در ظرف جداگانه ای متراکم می کنند و محصول تقطیر را بدست می آورند. چنانچه ناخالصیهای موجود در مایع اولیه فرار نباشند، در باقی مانده تقطیر به جا می مانند و تقطیر ساده جسم را خالص میکند. در صورتی که ناخالصیها فرار باشند، تقطیر جزء به جزء مورد احتیاج خواهد بود.

الف) تقطیر ساده:
هنگامی که ناخالصی غیر فراری (مانند شکر یا نمک) به مایع خالصی اضافه میشود فشار بخار مایع تنزل می یابد و به این دلیل که مولکولهایی که در سطح مایع هستند فقط مولکولهای جسم فرار نیستند قابلیت تبخیر مایع کم میشود. در هنگام تقطیر یک مایع خالص چنانچه مایع زیاده از حد گرم نشود درجه حرارتی که در گرماسنج دیده میشود، یعنی درجه حرارت دهانه خروجی، با درجه حرارت مایع جوشان در ظرف تقطیر، یعنی درجه حرارت ظرف، یکسان است.
شکل دستگاه تقطیر ساده:

 

برای دریافت پروژه اینجا کلیک کنید

دانلود پروژه مقاله ماشین ابزار تولیدی در word

دوشنبه 95/2/27 2:8 صبح| | نظر

 

برای دریافت پروژه اینجا کلیک کنید

 دانلود پروژه مقاله ماشین ابزار تولیدی در word دارای 102 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود پروژه مقاله ماشین ابزار تولیدی در word   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی دانلود پروژه مقاله ماشین ابزار تولیدی در word ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن دانلود پروژه مقاله ماشین ابزار تولیدی در word :

ماشین ابزار تولیدی

مکانیزم تشکیل تراشه براده
1-3 تغییر شکل لایه برش خورده در عملیات برش
از عمل یک دندانه دار قابل تشخیص است که ابزار به صورتی جهت گرفته تا مواد اضافی از قطعه کاروالد به شکل تراشه ها جدا شود. شکل1-3ماشین کاری توسط کره ها را نشان می دهد که 1-3( c) شکلی است که تراشه ها به صورتی مجسم شده اند که در برش فنی تولید می شوند.

وقتی که یک ابزار برش یک لایه از قطعه کار را بر می دارد، لایه برش نخورده در ابتدا به صورتی الاستیکی دچار تغییر شکل می شود که جداسازی بعد از تغییر پلاستیک رخ می دهد و نزدیک لبه برش ابزار جای می گیرد اگرچه بدیهی پنداشتن این مطلب که تغییر شکل در یک نقطه یا یک خط متمرکز می شود، مشکل می باشد. برخلاف تغییر شکل پلاستیک در یک ناحیه خاص مابین قطعه کار تغییر شکل نیافته در یک جهت و ابزار برش در جهتی دیگر به دام می افتد همانند شکل32 فرایند تغییر شکل می تواند به تغییر شکل ناشی از فشرده سازی قطعه کار مابین دو صفحه شبیه سازی شود، همانطور که در شکل32 (b)نشان داده شده است. جداسازی تراشه ها از قطعه کار والد درنزدیکی لبه برش ابزار جای می گیرد.

مشکل در مطالعه مکانیزم تغییر شکل تراشه، فرایند تغییر شکل تراشه در جلو ابزار برش می باشد. عمل کردن به مشابهت تغییر شکل پذیری همانند تغییر شکل های بسیار بزرگ در برش قطعه کار، مشکل می باشد. برای آنالیز فرایند تغییر شکل تراشه ها همیشه به تکنیک های تجربی متوسل شده اند. روش های مختلفی استفاده شده است.

(i) تصویر گرفتن از سطح کناری تراشه توسط دوربین های سرعت بالا و به میکروسکوپ
(ii) مشاهده گرفتن تغییر شکل هی کرید (مستقیما)
(a)روی سطح کناری قطعه کار و (b) روی سطح داخلی یک قطعه کار مرکب
(iii) آزمایش نمونه های بی حرکت تراشه که توسط موارد زیر به دست آمده

ماشین با افت ابزار و (b) توقف ناگهانی دستگاه

311مشاهدات میکروسکوپی مستقیم
فرایند برش می تواند از طریق یک میکروسکوپ کوچک مشاهده شود در نتیجه تغییر شکل درتوده می تواند مطالعه شود.اغلب یک دوربین به میکروسکوپ متصل می شود و تصاویر ضبط شده به دست می اید بهرحال روشی مناسب برای عملیات های محدود مانند بررسی کردن شکل تراشه و مسیرهای جریان و; می باشد. این تکنیک ها می تواند نتایجی را برای برش های کندتر یا ماشین کا ری کند سرعت به دست می دهد.
حتی 16تا20قاب در هرثانیه نتایج رضایت بخشی را برای بررسی پدیده ماشین کاری در حالت های تند تر حاصل نمی کند.
یک تصویر نمونه از فیلم دوربین که توسط ارنست برداشت شده است که تغییر شکل میله در حالیکه توسط ماشین کاری می شود به طور مستقیم بررسی شده است. در شکل شماره 33 نمایش داده شده و این مطالعه، مکانیزم تشکیل تراشه های ناپیوسته را اشکار نمود.
اگرچه چنین تصاویر ضبط شده ای تنها می تواند توسط آزمایش مشخصات تغییر یافته میله ای که دارد قطعه کار می شود. مورد انالیز قرار گیرد بعضی اوقات جریان جانبی این بررسی ها را مبهم می نماید. تصاویر ضبط شده از طریق دوربین تصویربرداری ساختاری ها میکروسکوپی راه آشکار نمی نماید. اغلب در سرعت های کم ، تغییر شکل های میله توسط این روش بررسی می شود.
312: روش هایی برای نمونه های تراشه بی حرکت

دو تکنیک جداگانه برای به دست آوردن ریشه های تارشه بی حرکت، استفاده می شود. بیشتر اوقات زمانیکه فقط ریشه تراشه مطلوب باشد، یک ماشین ابزار خودکار استفاده می شود همانطور که در شکل34نشان داده شده است. ایده اصلی، بارکردن ابزار توسط پیچ برشی می باشد که در نتیجه آن ابزار به دورپیچ لولا می چرخد.

شکل35 یک نمونه از دستگاه ابزار خودرکار با بارگذاری ارتجاعی نمایش می دهد. یک نسخه متفاوت که توسط کیسوگلو(kececioglu) دامس(das) و Bhattacharyya،okushima،ldadze و دیگران استفاده شده است درشکل 35وa قفل ابزار می باشد که در تماس با پیچ چرخنده B ، در زیر حرکت فنر منقبض شوندهC قرار دارد. نیروی فنر به قفل ابزار توسط میله و کابل تماسیD منتقل می شود. زمانیکه پیجB می چرخد در نتیجه صفحهE به نقطه F روی قفل ابزار و منطبق می شود.

ابزار آزادانه به پایین می چرخد تحت تاثیر نیروی برش PZ و نیروی منقبض شونده فنرQ .این دو نیرو در میزان بیشینه خود هستند، درزمان رهایی، نیروی برش به سرعت به صفر کاهش می یابد در حالیکه نیروی فنر به یک مقدار مقرر شده توسط تراکم اولیه فنر کاهش می یابد. دستگاه ابزار خود کار به طراحی دقیق نیاز دارد در نتیجه مساحت انحرافی در یک میزان ممکنه ای دار محدوده سرعت عملیات نگه دشاته می شود. از ساختار شکل 36میتوان نشان داد که زاویه حاصل از خط تقاطعQ برای بدست اوردن ریشه انحرافa به صورت زیر می باشد.

نگه دارنده در شرایط قفل در موقعیت تعادل قرار دارد. نیروی برش pz ، در نقطه ای از ابزار دریک فاصله (R) از نقطه لولا عمل می کند، نیروی فنرQ در یک فاصله L2 از لولا عمل می کند و نیروی وزن(W)

در یک فاصله3Lاز نقطه لولا عمل می کند. وقتی پیچ قفل رها می شود ابزار تحت عمل نیروی فنر به پایین می افتد. نیروی فنر به تدریج از مقدار فشاراولیه خودQکاهش می یابد. نیرو برشP2 طولی نمی کشد که در نقطه ابزار عمل می کند. با فرض اینکه PZ تا فاصله انحرافی عمل می کند، معادله دیفرانسیلی می تواند به شکل زیر نوشته شود.
رابطه 32

باحل این معادله و تعیین شرایط مرزی از ، زمان ازرابطه زیر محاسبه می شود
رابطه 33
درحالیکه
سرعت نسبی برای یک انحراف ریشه ثابت از طریق زیر حاصل می شود
رابطه 34
کهVTسرعت افت ابزار و سرعت افت ابزار و V=سرعت کار
زاویه I زاویه مابین مسیر سرعت افت ابزار و سرعت کار در نقطه تحکیم می باشد OKUSHIMAاکوشیما و Hitomiهیتومی یک نوع وسیله ساده تر در شکل ماشین استفاده کردند. Hastings هیستینگر از یک وسیله ای که ابزار توسط یک انفجار کوچک شارژ می شود استفاده نموده است، که ای انفجار به طور الکتریکی در یک موقعیت مناسب در حین برش انجام می شود. در شکل37شارژ انفجاری Aکه در یک اتاقک Bقرار گرفته، برای برش پیچ نگه دارC استفاده می شود. پیستونD موجب انتقال نیروی از شارژ درحال سوختن به قفل ابزارE می شود یک حلقه برآوردهF روی قطر بیرونی جدیده شده این پیستون قرار گرفته است.
تکنیک دیگری برای بی حرکت نکردن نمونه های تراشه به همراه قطعات ابزار چسبیده به آن، توسط یک است سریع استفاده می شود. یک نمونه دستگاه با ایست سریع که توسط LDADZEلولا زد، MULLIKمولیک و BHATTACHARYYAاستفاده می شود در شکل 38نشان داده شده است در کنار ابزار ماشه ای قرار دارد که چرخش عناصر حلقه ای که نگاهدارنده قطعه کار و تراشه است متوقف می نماید. اطلاعات حاصل شده از این آزمایشات بررسی پدیده تماس، فعل انفعالات تراشه ابزار را قادر می سازد.
نتایج حاصل از بررسی ها
از تحقیقات حاصل از روش های متفاوت ، توافق نظرات در سرتاسر جهان روی حقایق اصلی و اساسی مربوط به مکانیزم تغییر شکل تراشه به دست آمده است.
1-درحین ماشین کاری مواد هادی مانند آهن و آلومینیوم، سرب، مس، تیتانیوم، و ; یک ناحیه تغییر شکل پلاستیک در جلو لبه برش ملاحظه شده است
درنتیجه تغییر شکل پلاستیک، ضخامت تراشه بزرگتر از لایه برش نخورده می باشد
یک ناحیه مشخص از انفصال مابین تراشه و قطعه کار در جایی که تغییر شکل به تدریج در جهت لبه برش افزایش می یابد این ناحیه، ناحیه برشی یا ناحیه تغییر شکل اولیه نامیده می شود.

شکل39نتایجokushima اکوشیما که نمایانگر وجود ناحیه برشی در شرایط و سرعت برش 90m/minuteمی باشد.
تحقیقات اکوشیما در سرعت برش13mm/minute در شکل 10-3 نشان داده شده است تغییر شکل مواد در حال برش به صورت غیریکنواخت در ناحیه برشی توزیع شده است. دراین ناحیه ، تغییر شکل به تدریج در جهت ابزار برش و خیلی نزدیک به لبه برش افزایش می یابد. درناحیه برشی یک تغییر شکل بسیار شدید ملاحظه شده است.

اگرچه در ماشین کاری با سرعت های برش بالاتر، عرض ناحیه برشی بسیار کوچک می باشد و تقریبا 1تا 10 میکرون می باشد.این شرایط ایده تغییر شکل لایه ای که در یک ناحیه کوچک قراردارد و مربوط به یک برش موضعی می باشد را تایید می نماید. این ایدهpiisponen پسیین را قادر ساخت تا یک مدل کارت همانند با جائیکه لایه نازک فلز در سرتاسر سطح ابزار یکی پس از دیگری حرکت می کند را توسعه بخشد(که در شکل 311 مشاهده می کند).بنابراین، فرایندشکل گیری تراشه ها به صورت یک فرایند پی در پی لغزیدن در تمام برش کاری بخش های لایه درحال برش نمایان شده است. این ساده سازی به انالیز گسترده ای برای مکانیزم شکل گیری تراشه کمک کرده است.

(z) با مقایسه تغییر شکل تراشه ها توسط آزمایش کششی، مشاهده شده است که عمل فشار همه جانبه خاصیت لاستیکی مواد تحت شرایط برداشت فلز را افزایش می دهد.نتیجه بعد از مقایسه قطعات بسیار ریز ریشه های تراشه با قطعات بسیار ریز حاصل از ازمایشات کششی یا دیگر ازمایشات مکانیکی استاندارد، منتج شده است.

دربسیاری از موارد حالت های تغییر شکل یافته در حال برش نزدیک به حالت برش ساده می باشد.این مسئله ممکن است توسط آنالیز بافت مواد تغییر شکل یافته، اثبات شود.

از یک مطالعه شکل 312 به نظر می رسد که مسیر بافت با مسیربرش منطبق نمی باشد به طور مثال درطول B1نزدیک و یا حتی متقارن مسیر تغییر شکل حداکثر می باشد و در طول B2عمل می کند.

بنابراین بافت قطعات بسیار ریز نمونه های تراشه همانند مسیر تغییر شکل حداکثر پذیرفته شده است. تحت شرایط تغییر شکل بزرگ فرض اینکه خطوط بافت به مشابه خطوط تغییر شکل است، منطقی می باشد.
از جهت خط بافت با فرض برش خالص، درجه تغییر شکل می تواند به صورت زیر تخمین زده شود.

رابطه
که B2 =مسیر تغییر شکل حداکثر برای یک نقطه معین همانطور که در شکل312 نشان داده شده است
B1 =زاویه تفکیک مسیر برش برای نقطه مشابه
E =کرنش برشی یا برش، نسبی نقطه مشابه
این رابطه ریشه ها را به دست آورده است(بعدا نشان داده شده)
رابطه
اولین راه حل مسیر کشیدگی حداکثر را تعیین می کند . به طور مثال خطوط بافت یا زاویه توسط مسیر ناحیه برشی به دست می آید درحالیکه راه حل دوم مسیر فشار حداکثر عمود برمسیر کشیدگی را تفکیک می کند. اگرچه زاویه B1که خط برش درناحیه برشی را تفکیک می کند به طور قراردادی زاویه برش نامیده می شود. طرح ساده شده از فرض یک ناحیه تغییر شکل باریک تحت شرایط با اهداف محدود مجاز می باشد.
تغییر شکل دوایر تعیین مسیر تغییر شکل حداکثر را سامت
بابررسی تغییر شکل یک دایره به بیضی، موضوع اثبات می شود. زمانیکه در عرض تنش برشی می باشد، نقاط Aو B از دایره به مکان های B1,A1همانطور که در شکل 133 مشاهده می شود، انتقال می یابد. درحین دوره ای مشابه یک نقطه C روی دایره به نقطه C1جابه جا می شود
مختصات نقطه C1 به صورت زیر می باشد.
E کرنش برشی به صورت تعیین می شود
در مختصات قطبی
برای پیدا کردن رابطه بیضی که در نتیجه به تغییر شکل برشی ایجاد شده به صورت زیر عمل می کنیم
از انجا که فرض شده است امتداد تغییر شکل بافت همزمان با مسیرتغییر شکل اصل در کشش می باشد، محور اصلی بیضی باید مسیر بافت را تفکیک کند.ازاین رو معادله دیفرانسیلی 39برای مسیر بافت می باشد.
با بررسی رابطه 311 برای تعیین مسیر خط بافت رابطه 314 حاصل می شود.
با حل رابطه 314 E=ZLITZبه دست می اید.

بابررسی شکل 313(B)جایی که شعاع دایره برابر با واحد می باشد و با رابطه زیر توصیف می شود
درصورتیکه این دایره در جهت OR دستخوش تغییر شود، زمانیکه
درصورتیکه M شیب محور بزرگ وَMََِ شیب محور کوچک بیضی باشد
تا اینکه رابطه M و َMََِریشه های رابطه هستند
اگر زاویه مابین شیب امتداد و محور بزرگ باشد

رابطه 321
این رابطه درهرنقطه اعتبار دارد، مقدار E هرچقدر که باشد اما شیب باید یک جهت باشد و این تنها شرط مورد نیازمی باشد
با OX وdy مختصات قطبی، بیضی به صورت زیر می باشد.
رابطه 322
B,aنصف محورها باشند. ناحیه محدود به بیضی با ناحیه دایره برابر می باشد
بنابراین ab=1
نسبت محورها به صورت می باشد.

یک نقطه از بیضی به صورت زیر باشد.
با جانشین کردن در رابط 322

رابطه 323
رابطه 325
اگر یک دایره در صفحه میانی و قطعه کار قبل از ماشین کاری کشیده شود، اندازه cمنجر به تعیین c کرنش برشی و زاویه می شود. همانطور که از امتداد محور بزرگ بیضی به دست می آید، زاویه Bمی تواند کسر شود
باتوجه به آزمایشات ZORER ، kufareکوفارو، Aliev-smirno و افراد دیگر، که بارسم کردن تغییر شکل دوایر محاطی روی سطح قطعه کار به بیضی همانند شکل 14-3موارد زیر قرار شده است.
a) امتداد 3محور اصلی تغییرشکل
b) مقدار و نشانه 3محور اصلی تغییر شکل
c) طبیعت موادی که در حال برش دچار تغییر شکل می شوند. مثل نوع تنش
d) کرنش در حال برشE
شکل 315 به طور شماتیک تغییر شکل دوایر به بیضی ها را در حین شکل گیری تراشه نشان می دهد.
رابطه 326
R0=شعاع دوایر حک شده برروی قطعه کار
R1,Rc=نصف محورهای بیضی بعد از تغییرشکل
نوع شرایط تنش توسط مفهوم یک شاخص زاویه p تخمین زده می شود این شاخص از تئوری levy-ladeحاصل می شود.
رابطه 327

اگر مقدارهایE1,E2,E3 برای هرنوع تغییر شکل برقرارباشد،P میتواند تعیین می شود P=0Oبرای فشار خالص، برای برش خالص، P=30oبرای کشش خالص آزمایشات انجام شده توسط kufarerدر حالیکه برش با و باشد اشاره کرده است که شاخص زاویهf تقریبا 30oمی باشد، بنابراین تائید می کند که شرایط تنش در حین برش مواد هادی، برشی است کرنش در حال برشE ، توسط رابطه زیر حاصل می شود.

رابطه 328
تغییر شکل پلاستیک درگیر در شکل گیری تراشه ها برسختی مواد تاثیر می گذارد. سخت شدن معمولا با کاهش درخاصیت ها دی و یا از دست دادن خاصیت پلاستیکی، مشخص می شود. کرنش زمانیکه یک لایه دستخوش تغییر می شود، افزایش می یابد. درحین این فرایند، مواد دستخوش کرنش می شوند ،مقدار کرنش تراشه یک ویژگی از شدت تغییر شکل پلاستیک می باشد که توسط مواد قطعه کار متحمل می شوند. یک حراج از توزیع سختی در ناحیه شکل گیری تراشه در شکل 316 نشان داده شده است که مربوط به ماشین کاری مواد با کربن01درصد و سرعت برش 10m/minuteوعمق برش 12mmمی باشد.

از آنجا ملاحظه شده است که سختی در لایه تغییر شکل یافته یا بهش چسبیده به لایه تغییر شکل یافته(لبه ساخته شده) تقریبا2/1تا2 برابر سختی توده مواد تحریف نشده می باشد. برای ماشین کاری مواد هادی سختی مواد تغییر شکل یافته می تواند 3برابر بزرگتر از مواد تحریف نشده باشد.

اگرچه چنین افزایشی در میزان سختی با آهن چدنی که توانایی سخت شدگی کمتری دارد، غیرممکن می باشد. تغییر شکل پلاستیک و سخت شدگی لایه تحت تغییر شکل در فولاد خیلی بیشتر از آهن چدنی می باشد.

4) cokerتکنیک های فتوالاستیک را استفاده نموده است و از مدل های پلاستیک تراشه دمای شکل گرفته استفاده نموده و با استفاده از خطوط هم شیب و همرنگ قادر شده تا یک میدان اصلی از تنش ها را به دست آورد همانطور که در شکل 317 نشان داده شده است. تنش های بالای ابزار که تحت فشار شعاعی و تنش های پایین ابزار تحت کشش شعاعی قرار دارد. خطوط همرنگ (خطوطی که تنش های برشی ثابت دارند) در شکل 317 دیده می شود. محیط ناحیه برش پلاستیک می تواند از نتایج مشاهده شود.
32 مرور مکانیزم تغییر شکل
شکل32نشان می دهد که یک تراشه توسط یک فرایند تغییر شکل، حاصل می شود، زمانیکه درمعرض نیروی ابزار برشی روی قطعه کار قرار می گیرد. فرایند تغییر شکل درگیرشده در مکانیزم شکل گیری تراشه دررنج پلاستیک می باشد. به اثبات رسیده است که هیچ اثر پایداری توسط تنش های در حدود رنج پلاستیک تولید نمی شود.درمقایسه ، تنش ها در رنج پلاستیک ممکن است موجب تغییر شکل بزرگ شوند. دراین رنج تغییر شکل در مدت کوتاهی به صورت یک جداسازی ساده اتم می باشد که تغییرات ساختاری جبران ناپذیری به وقوع می پیوندد. دومکانیزم محتمل که دررنج پلاستیک خاتمه می یابد و تغییر شکل پلاستیک و شکس

ت به دنبال آن می آید: توسط شکست یا توسط تسلیم شدن
321:شکستfracture
شکست توسط بعضی عیوب مانند ترک میکروسکوپی یا تمرکز تنش در نزدیکی ترک، ایجاد می شود ،اگراین مقدار بالای تنش برابر با مقاومت چسبندگی مواد باشد، اتصال اتم ها در آن ناحیه، غلبه خواهد کرد. هنگامی که آنها شکسته می شوند، عیوب درسرتاسر مواد منتشر می شود و موجب شکست می شود.
Griffithگریفت یک مدل برای رشد خودبه خودی ترک توسعه داده است. هرزمان که انرژی سطح مورد نیاز وابسته به تولید سطح جدید از آزادسازی انرژی کرنش الاستیک در راس ترک، باشد مواد دچار شکست خواهند شد.

با بررسی یک ترک بیضوی نازک(شکل318)، انرژی مورد نیاز برای تولید دو سطح جدید توسط 2tتعیین می شود که دراین رابطهT انرژی سطح مواد و مساحت سطح AB می باشد.
Shaw یک معیار برای رشد ترک را بنا نهاد این معیار توسط برابری انرژی کرنش در رامس ترک با انرژی سطح موردنیاز توسط 2T() تعیین می شود.انرژی کرنش الاستیک ذخیره شده توسط رابطه زیر تعیین می شود.

 

برای دریافت پروژه اینجا کلیک کنید
<   <<   91   92   93   94   95   >>   >